
MD x CANdle Manual

Contents
Quick Start Guide

MD x CANdle Ecosystem overview

Controllers

CANdle and CANdle HAT

Software package

MD FDCAN protocol

MD CANopen

Common problems and FAQ

Downloads

Changelogs

Quick Start Guide

Before first use
Here are some things to look out for while playing with the MD x CANdle ecosystem for the first time:Skip to main content

1. Always stay cautious when dealing with actuators. Even though they don’t seem like it, they may

severely hurt you when unintentional movement occurs. It’s recommended to fix the actuator to

the workbench.

2. Get accustomed to the safety limits section of this document. While developing your application

be sure to keep the limits low, and only if you are sure you know what you’re doing - increase the

limits.

3. We recommend using power supply sources that can work in two quadrants - meaning they can

supply and dissipate some of the energy produced by the motor in case it works as a generator.

Old trafo-based power supplies usually block current coming into the power supply, causing

overvoltage events on the MD80s. The best choice is to use LiPo batteries or at least SMPS

power supplies.

Video tutorials
Check out our video tutorials if you prefer this way of presentation:

1. Guide on how to set up a new MD series motor controller to work with a motor of your choice:

MD x CANdle - Brushless Motor Setup Guide

2. Quick startup guide - watch when your motor is already configured and you’d like to try the

examples: MD x CANdle - Getting Started Tutorial

3. MDtool guide - a short introduction to MDtool and its basic commands (at this point the MDtool

has evolved, however, the main principles are the same) MD x CANdle - MDtool

4. Motion modes guide - an introduction to motion modes available on MD series motor controller

MD x CANdle - motion modes

5. ROS/ROS2 startup guide - an introduction to ROS/ROS2 drivers for MD series motor controller

MD x CANdle - ROS/ROS2 startup guide

Configuring the MD series controller for a new motor
MDtool can be used to set up a new motor to work with the MD series motor controller controller. This

approach simplifies the configuration process so that the end user can reconfigure the MD series

controller driver to work with almost any brushless motor.

Skip to main content

https://www.youtube.com/watch?v=74zTUlJ2hmo&list=PLYKmGVZotGRoMR8eV5AuC2XP_qJsL6Bu6&index=5
https://www.youtube.com/watch?v=bIZuhFpFtus&list=PLYKmGVZotGRoMR8eV5AuC2XP_qJsL6Bu6&index=1
https://www.youtube.com/watch?v=BrojxsU8oD8&list=PLYKmGVZotGRoMR8eV5AuC2XP_qJsL6Bu6&index=2
https://www.youtube.com/watch?v=XnD8sG22zro&list=PLYKmGVZotGRoMR8eV5AuC2XP_qJsL6Bu6&index=3
https://www.youtube.com/watch?v=6sLQNaJKuJY&list=PLYKmGVZotGRoMR8eV5AuC2XP_qJsL6Bu6&index=4

These steps are universal between the controller hardware versions, however, be sure to

always check the maximum ratings before applying voltage to the controller.

First, make sure the MD controller can work with your motor. A vast majority of hobby motors will

be suitable, although too big motors in terms of power and gimbal motors (with high phase

resistance) might not work as expected. Be sure to contact us before you proceed with a gimbal

or high-power motor (over 500W peak power).

Place the diametrically magnetized magnet on the motor shaft and mount the MD controller

firmly, centered above the magnet.

Fig. 1 Magnet - encoder placement cross section

The optimal height between the magnet and the encoder IC is 1mm. The magnet and the encoder

must be on the same rotation axis.

MD80 V3.0 is equipped with seven mounting holes. Please refer to the technical drawing below to

find out the hole dimensions and their placement. The 3D model of the driver can be found in the

downloads section.

Warning⚠

Skip to main content

https://www.mabrobotics.pl/product-page/encoder-magnet

Always make sure the head of the screw is inside the white hole outline. Otherwise, it may

cause permanent damage to the controller when a short circuit occurs between the head

screw and any of the copper planes. Using M2.5 DIN912 stainless socket screws is

recommended.

Warning⚠

Skip to main content

Solder the motor wires to the PCB making sure all the individual motor wires within a single

phase are connected (in case the motor is wound with more than one wire on each phase). It is

possible to solder the motor from the bottom, however, soldering the wires on the top is also

acceptable. Make sure that the phase wires are connected only to their respective pads.

The order of the cables does not matter (does not change the rotation direction) as long as

the order is not changed after the calibration. Each modification in wire order should be

followed by a full motor calibration.

Warning⚠

Skip to main content

Sometimes soldering may be difficult due to the high-temperature enamel on the copper

wires. In that case, try to apply solder at high temperatures using flux until the solder sticks

to all wires nicely.

Connect the power supply to the controller through the CANdle device as specified in this

section. When powered the controller should blink shortly with a green LED once a second. If the

red LED is fully on there are some errors that should be cleared after the calibration.

Always make sure that the polarity of the power supply is correct. MD controllers do not

have reverse polarity protection so connecting the power supply in reverse polarity will

cause permanent damage to the controller.

Connect CANdle to the PC using a USB type-C cable.

Ensure you’ve got the latest MDtool. For the MDtool installation guide refer to the MDtool section.

Please upgrade the setup software if any of your devices (MD or CANdle device) is older than

the one from “latest” row in the releases table.

Once installed and run the MDtool will create an MDtool directory in ~/.config directory.

Press Ctrl+H to view the hidden folders (starting with a dot)

There, you will find a mdtool.ini file which contains factory settings and should not be modified, and a

mdtool_motors directory, which holds all the motor configuration files you will work with.

Hint

Warning⚠

Hint

Skip to main content

https://github.com/mabrobotics/mdtool/releases

Feel free to add a new *.cfg file for your custom motors in there. Use the already existing files as a

reference, especially the AK60-6.cfg which contains some additional comments.

Check if the MD controller can be discovered properly using the mdtool ping all command

To setup the MD series controller simply call mdtool setup motor <ID> <*.cfg> where the ID

is the ID that shows up after the mdtool ping command is called, and the *.cfg is one of the

files existing in the mdtool_motors directory (press tab to list available config files). If anything

fails during the process be sure to check your setup and try again.

Do not worry if at this point there are many errors after calling mdtool setup info <ID>

command (like below). They should be cleared after a successful calibration.

Skip to main content

When succeeded, the motor is set up correctly and now’s the time to calibrate it using mdtool

setup calibration <ID> . Please follow the calibration guidelines for more information on the

calibration process itself.

After the calibration the motor should be ready to use - the best way to find out everything was

completed without errors is to check the MD series motor controller info using the mdtool setup

info <ID> . This command lists all the important parameters of the actuator. Errors are shown in

red on the bottom if anything has failed during the process. If there are still errors after the

calibration be sure to check out the error’s description and try the recommended action to clear it

status.

Correct after-calibration mdtool setup info command output may look like this:

Skip to main content

Your actuator should be now ready to go! To make it move you can try the mdtool test move <ID>

<pos> command, or try the CANdle lib C++ or Python examples.

Ecosystem overview
MD x CANdle is a system of brushless actuator controllers (MD series motor controller) and translator

devices (CANdle) used for interfacing with them. MD series controller actuators can be used in
Skip to main content

https://github.com/mabrobotics/candle

advanced robotic projects like quadrupedal robots, robotic manipulators, exoskeletons, gimbals, and

many more.

MD series motor controller
MD series motor controller is a highly integrated brushless motor controller. It can be interfaced with a

great variety of motors to turn them into advanced servo actuators. MD series motor controller can

work with both direct drive (no gearbox) and geared motors.

CANdle and CANdle HAT
CANdle (CAN + dongle) is a translator device between the host controller and the MD series motor

controller drivers. It is possible to interface CANdle with a regular PC over USB bus or CANdle HAT

with SBCs (such as Raspberry PI) over USB, SPI or UART bus. The latest CANdle and CANdle HAT

devices are fitted with a switch for enabling and disabling the built-in termination resistor.

We officially support Linux x86-64 and ARMv8-A architecture hosts.

Note

Skip to main content

Safety information
Even though the MD series motor controller is a small brushless controller it can push a substantial

amount of current through the motor windings. This means there are many hazards related to the

high torques that the actuator is able to produce as well as elevated temperatures that may occur

close to the MD series motor controller controller or the motor. Always make sure the actuator is

mounted firmly and does not pose a threat to its surroundings. Make sure the power supply current

limits are set to low values (~1A) as an additional safety measure when you are unsure about the

tested behavior of the system.

Operating conditions (MD series motor controller and

Skip to main content

CANdle)

Hardware setup
CAN bus topology is a single-line network structure. A typical hardware connection/wiring scheme for

CANdle x MD ecosystem is presented in the picture below:

In case you’d like to read more about the recommended lengths of the bus segments we

suggest the elektormotus guide.

The CAN bus termination is a single Molex connector with an embedded 120Ohm resistor.

Termination should be always be attached to the last controller in a string.

Ambient Temperature (Operating) 0°C - 40°C

Ambient Temperature (non-operating) 0°C - 60°C

Maximum Humidity (Operating) up to 95%, non-condensing at 40 ºC

Maximum Humidity (Non-Operating) up to 95%, non-condensing at 60 ºC

Altitude (Operating) -400 m to 2000 m

Hint

Skip to main content

https://emusbms.com/files/bms/docs/Elektromotus_CAN_bus_recommendations_v0.2_rc3.pdf

Fig. 2 CANdle MD-actuator string (USB bus)

Fig. 3 CANdle HAT MD-actuator string (SPI/UART bus using Raspberry Pi 4)

Skip to main content

Measurements
MD drivers are equipped with sensors that allow for measuring the motor position, velocity, and

torque. Whether the motor has an integrated gearbox or not, the position, velocity, and torque are

in the output shaft reference frame. This means that changing the position from 0.0 to 2 radians, will

result in approximately one rotation of the motor for direct-drive (gearless) servos and approximately

one rotation of the gearbox output shaft for geared motors.

Position

To measure the position of the rotor the MD driver uses an internal magnetic encoder. The resolution

of the encoder is 14 bits (16384 counts per rotation). The drive aggregates all the measurements to

provide multi-rotation positional feedback. The reference position (0.0 rad) is set by the user and

stored in the non-volatile memory. Please see mdtool config zero command for more information

on how to set the desired zero position.

When using geared actuators with gear ratios above 1:1 it is not possible to determine the

position after startup unambiguously, since the motor completes multiple rotations per single

rotation of the output shaft. For example, for a 2:1 gearbox, there are two sections within a

single output shaft rotation where the motor shaft is in the same position. Unless the motor

is placed in the wrong “section” during startup the absolute encoder functionality will work.

To deal with this issue please see the output encoder.

Velocity

The velocity is estimated by measuring position change in time, at a frequency of 40kHz. The

measurements are then filtered using a low-pass filter with a cut-off frequency of 5 kHz since the

position differentiation method introduces noise.

π

Note

Skip to main content

Torque

Actuator torque is estimated by measuring motor phase currents. This method can be used on low-

gear ratio actuators (preferably below 9:1), that are easily back-drivable, to get an estimate of the

torque applied by the motor. In applications with higher gear ratios, the torque readout might be less

accurate due to excessive friction in the gearbox.

Safety limits
Safety limits are implemented to limit the actuator parameters, to protect the controller or motor from

overheating, as well as the surrounding environment from too-powerful actuator movements. Limits

apply to: position, velocity, torque, phase current, and temperature of the MOSFETs and the motor.

Setting the max current limit to above the maximum continuous current may damage the

MDxx controller if the maximum torque is commanded for a prolonged period.

Current Limit

Let’s start with the max current limit:

This setting limits the maximum current (and thus torque) the motor controller can output. It is the last

user-configurable limit in the control scheme. The maximum current is set using the mdtool config

current command, and by default, it is usually set to 10A. This setting can be saved in the non-

Warning⚠

Skip to main content

file:///home/pawel/mab-github/MD80-x-CANdle-Documentation/_build/html/_images/current_limit.png
file:///home/pawel/mab-github/MD80-x-CANdle-Documentation/_build/html/_images/current_limit.png

volatile memory so that it is always loaded on the actuator power-up. To estimate the maximum

current setting for a particular motor, you should use the following formula:

where

 - calculated current in Amps

 - desired maximum torque

 - gear ratio

 - motor’s torque constant

for example let’s calculate the max current limit for AK80-9 motor, for a 2Nm max torque:

Usually this limit should be set to the highest peak torque that is allowed in the system so

that it doesn’t limit the actuator performance.

Now, to save this value into the MDxx please refer to mdtool config current command. Don’t

forget to save it with the mdtool config save command.

I[A] =
τ[Nm] 1

Gr

Kt[
Nm

A
]

I[A]

τ

Gr

Kt

τ = 2Nm

Gr = 9 : 1− > 9

Kt = 0.091Nm/A

I[A] =
2[Nm]⋅ 1

9

0.091[Nm

A
]

I[A] ≈ 2.44A

Note

Skip to main content

Torque Limit

The next limit is the max torque limit which can be set using the CANdle script. This limit applies to

maximum torque and is expressed in Nm. It is respected in all motion modes. When target torque, set

either by either of the controllers, exceeds the max torque param the target torque is limited and a

motion warning is generated.

if the torque bandwidth is set to a low value it is possible to read torque values that are

above limits when external torque is applied (for example during impacts). This is only true

in transition states - when the load is constant the limits will work as expected. This is

because with low torque bandwidth the internal torque PI controllers may be too slow to

compensate for rapidly changing torque setpoint when hitting the torque/current limit. If you

care about accurate torque readout be sure to play with the torque bandwidth parameter

and possibly increase it from the default level.

Velocity Limit

Velocity limit is respected only in Velocity PID / Profile Velocity and Impedance / Position PID / Profile

Position modes. When target velocity, set either by the user or the Position PID, exceeds the max

velocity param the target is limited, and a motion warning is generated.

Note

Skip to main content

file:///home/pawel/mab-github/MD80-x-CANdle-Documentation/_build/html/_images/torque_limit.png
file:///home/pawel/mab-github/MD80-x-CANdle-Documentation/_build/html/_images/torque_limit.png

Position Limit

Position limit is respected only in Impedance / Position PID / Profile Position modes. When target

position, set by the user, exceeds the <position limit min : position limit max> param range

the target is limited to that range, and a motion warning is generated. Attempt to start the motor

outside the range will generate a motion error.

FDCAN Watchdog
MD drivers feature an FDCAN Watchdog Timer. This timer will shut down the drive stage when no

FDCAN frame has been received in a specified time. This is to protect the drive and its surroundings

in an event of loss of communications, for example by physical damage to the wiring. By default, the

watchdog is set to 250ms. This time can be set to any value in the range of 1 to 2000ms using
mdtool config can command. When the watchdog is set to 0, it will disable the timer, however, this

can lead to dangerous situations, and it is not a recommended way of operating MDxx.

We do not recommend disabling the CAN watchdog timer.

Warning⚠

Skip to main content

file:///home/pawel/mab-github/MD80-x-CANdle-Documentation/_build/html/_images/velocity_limit.png
file:///home/pawel/mab-github/MD80-x-CANdle-Documentation/_build/html/_images/velocity_limit.png
file:///home/pawel/mab-github/MD80-x-CANdle-Documentation/_build/html/_images/position_limit.png
file:///home/pawel/mab-github/MD80-x-CANdle-Documentation/_build/html/_images/position_limit.png

Output Encoder
Output encoder is a position sensor that can be attached to the output shaft of the actuator. It is

usually useful for geared motors where the output shaft position after startup cannot be determined

unambiguously using the MD’s onboard encoder due to the gearbox. By using an output encoder one

can make sure that the output shaft position is always known at startup.

Currently we support one encoder type with two placement configurations:

AS5047 placed axially on the output shaft with a regular diametrically magnetized magnet

Skip to main content

AS5047 placed non-axially together with a diametrically magnetized ring magnet

Configuration

The output encoder configuration is performed in the motor config files and saved to the MD series

motor controller using the mdtool setup motor command. There are only two parameters used in

output encoder setup:

[output encoder]
output encoder = <encoder type>

Skip to main content

where:

output encoder mode = <encoder mode>

<encoder type> Description

AS5047_CENTER for axially placed AS5047 encoder

AS5047_OFFAXIS for non-axially placed AS5047

MB053SFA17BENT00 Renishaw RS422 17-bit RLS encoder

CM_OFFAXIS CubeMars motors offaxis encoder

<encoder mode> Description

STARTUP initial position from output encoder, report main encoder values,

motion based on main encoder

MOTION initial position from output encoder, report output encoder values,

motion based on output encoder

REPORT initial position from main encoder, report output encoder values,

motion based on main encoder, calibration of the output encoder is
impossible

MAIN output encoder is used as the main encoder. All output encoder
measurements are mapped as main encoder values.

CALIBRATED_REPORT initial position from main encoder, report output encoder values,

motion based on main encoder, calibration of the output encoder is
possible

Skip to main content

The non-axial configuration outputs a nonlinear position values. This means it requires a full

calibration (your setup should be able to rotate by at least one full rotation), and in case of

the report mode it will output nonlinear position and velocity readings that will have to be

compensated in the host’s software

Not all modes are recommended for every encoder. The non-axially placed AS5047 encoder is

inherently more noisy and less accurate and thus we recommend using it only in STARTUP mode.

Please refer to the table below:

Steps to add an external encoder to the driver setup:

make sure the encoder sensor is placed correctly:

<encoder type> Valid modes Description

AS5047_CENTER STARTUP / MOTION / REPORT / MAIN

/ CALIBRATED_REPORT

-

AS5047_OFFAXIS STARTUP This configuration is much

more noisy than the axial

placement

MB053SFA17BENT00 STARTUP / MOTION / REPORT / MAIN

/ CALIBRATED_REPORT

-

CM_OFFAXIS STARTUP Only offaxis configuration is

supported

Warning⚠

Skip to main content

in case of axially placed sensors make sure they are placed in center at correct height above

the magnet (1 mm is usually optimal)

in case of non-axial configuration make sure the magnet is close to the ring magnet

(<0.5mm) and the sensor IC is at least 2mm above or below the ring magnet horizontal

plane.

Connect the MDxx with the encoder using a picoblade series cable assembly and connect power

to the MDxx.

Modify the motor config file according to your setup and save it to the MDxx using mdtool

You can confirm the setup using the mdtool setup info command to make sure all parameters are

correct:

Skip to main content

At this point some errors will be present as the setup is not yet calibrated.

Calibrate the MDxx using mdtool setup calibration command

Calibrate the output encoder using mdtool setup calibration_out command

Test the encoders using mdtool test encoder command.

Note

Skip to main content

Use the mdtool setup info all command to make sure there are no errors and the test

results (min, max and stddev errors) are within your expectations.

The external encoder is ready to use! For more information on external encoder parameters

please see the output encoder calibration section.

Calibration
Calibration should be performed when the MDxx controller is first mounted to the motor or when

anything changes in the motor-controller assembly. It has three main stages during which specific

parameters of the setup are measured and saved.

The calibration has to be performed on a motor that is free to rotate with no load attached to

its output shaft. If the calibration fails, you will see errors when executing the mdtool setup

info command. If the failure is critical the MDxx will remain disabled until the next

calibration attempt.

Pole pairs detection

In the first stage the motor will execute one full rotor revolution in order to check if the pole pair count

is correctly configured. If the detected number of pole pairs is not consistent with the number that was

typed in the *.cfg file during motor setup the calibration will fail and an error

ERROR_POLE_PAIR_DET will be shown until the next calibration attempt. If you are unsure about

the number of pole pairs (you can check it by counting magnets and dividing it by 2) just place zero in

the *.cfg file. Then the pole pairs will be automatically detected.

Encoder eccentricity

Encoder eccentricity is the second measurement that takes place. During this part, the motor

performs a slow single rotation in both directions to assess the amount of error due to non-axial

encoder placement and external magnetic disturbances.

Note

Skip to main content

Motor resistance and inductance

Motor parameters - resistance and inductance are measured in order to calculate the correct current

PI controller gains to achieve a certain torque bandwidth (please see the section below). The

parameters are measured in the DQ reference frame meaning the resultant resistance and

inductance values have to be transformed from either line-to-line quantities or phase quantities.

Torque bandwidth

Even though the torque command on MD controllers seems to be applied instantaneously, in reality,

it’s not the case. As in every system, there’s a response to the command which depends on the

system itself and the controller gains. A parameter called bandwidth was introduced to describe how

fast the output of a system reacts to the changing input. Calibrating the motor for a certain torque

bandwidth requires measuring motor parameters. This happens in the last calibration stage and

manifests as an audible sound (beep). The torque bandwidth default setting is set using the motor

config file. It can be set to anywhere from 50 Hz to 2.5 kHz, however it is important to note that higher

torque bandwidth causes a higher audible noise level. Please see the mdtool setup calibration

command for more details on calibrating the actuators. When the system that you’re designing is a

highly dynamic one, you want the torque bandwidth to be higher than the default setting of 50 Hz.

Start by calibrating the drives for 1 kHz torque bandwidth, and if you see this is still not enough you

can increase it further.

Output Encoder Calibration

The output encoder calibration routine is used to recognize the correct direction of rotation, and

record the correction lookup-table to account for non-axial placement of the encoder in respect to the

magnet.

The full calibration routine rotates the actuators output shaft by more than one single

rotation in the FULL calibration mode. Please make sure the shaft is free to rotate during the

test.

Warning⚠

Skip to main content

In case your setup is not able to complete a full rotation due to mechanical constraints you can set

the output encoder calibration mode to DIRONLY in your *.cfg file in the [output encoder]

section. This way the calibration will end on the first stage - checking the correct direction of rotation,

so only 1/4 of a full rotation is needed. Please note that this is not possible using off-axis encoder - it

requires a full calibration routine.

To run the routine, use the mdtool setup calibration_out command. After completing the routine

the MDxx will reboot and after that it is recommended to run the mdtool setup info command in order

to make sure the setup reports no errors:

Skip to main content

The output encoder parameters are rather straightforward, except the “output encoder last check”

errors. These values are filled during the output encoder check routine, which can be run using

mdtool test encoder output . These params represent the output encoder errors (max, min and

standard deviation) with respect to the main encoder mounted on the PCB. This means that if there
Skip to main content

are large inaccuracies during the calibration, or the output encoder moves in your setup, you can

always check how accurate it is by running the check_aux routine.

Example errors for AS5047_CENTER:

Example errors for AS5047_OFFAXIS:

As can be seen, the non-axial encoder features larger errors, and thus can be utilized only for initial

position determination rather than output shaft control. In case the errors get too large they will turn

yellow after running mdtool test encoder output command indicating there might be a problem

with your setup:

These errors will limit the maximum gear ratio that can be used to unambiguously determine

the startup output shaft position. Be sure to keep them as low as possible in your setup.

Note

Skip to main content

Motion modes

TL;DR: MD x CANdle - motion modes

To control the motor shaft with the user’s command MDxx is equipped with multiple control loops. All

controllers are based on a regular PID controller design with an anti-windup block. The saturator

(anti-windup) is an additional module that acts as a limiter to the ‘I’ part of the controller, as in many

systems, the error integration may grow to very large numbers, completely overwhelming ‘P’ and ‘D’

parts of the controller.

Hint

Skip to main content

https://www.youtube.com/watch?v=XnD8sG22zro&t=0s

Velocity PID

Velocity PID controller calculates velocity error based on target velocity (set by user) and estimated

velocity read from the encoder. Its output is a torque command for the internal current/torque

controller. The parameters of the controller are:

Velocity Target (in [rad/s])

kP (proportional gain)

kI (integral gain)

kD (derivative gain)

I windup (maximal output of an integral part in[Nm])

Position PID

Position PID mode is the most common controller mode used in industrial servo applications. In

MDxx, it is implemented as a cascaded PID controller. This means that the controller is working in two

stages, firstly the position error is calculated, and it is then passed to the Position PID, which outputs

the target velocity. This value is then passed as an input to the Velocity PID controller, which outputs

commanded torque. This mode uses both Position PID and Velocity PID and thus needs the following

parameters:

For Position PID:

Position Target (in [rad])

kP (proportional gain)

kI (integral gain)
Skip to main content

kD (derivative gain)

I windup (maximal output of an integral part in [rad/s])

For Velocity PID:

Velocity Target (in [rad/s])

kP (proportional gain)

kI (integral gain)

kD (derivative gain)

I windup (maximal output of an integral part in[Nm])

To properly tune the controller, it is recommended to first tune the velocity controller (in velocity PID

mode), and then the position PID. The controller can be described with a diagram:

Impedance PD

Impedance Control mode is a popular choice for mobile or legged robots, as well as for any compliant

mechanism. The main idea behind it is to mimic the behavior of a torsional spring with variable

stiffness and damping. The parameters of the controller are:

Position Target

Velocity Target

kP (position gain)

kD (velocity gain)

Torque Feed Forward (Torque FF)

The torque output is proportional to the position error and velocity error and additionally

supplemented with a torque command from the user. Here are some of the most common

applications for this control mode:
Skip to main content

Spring-damper mechanism - when velocity target is set to 0, impedance controllers kP gain

acts as the virtual spring stiffness and kD as its damping coefficient. Example use case: a

variable suspension for a wheeled robot, where suspension stiffness can be regulated by kP,

damping by kD, and height (clearance) by changing the target position;

High-frequency torque controller, where its targets and gains can act as stabilizing agents to

the torque command. Example use case: In legged robots, force control can be achieved by

advanced control algorithms, which usually operate at rates below 100 Hz. It is usually enough to

stabilize the robot but too slow to avoid vibrations. Knowing desired robot’s joint positions,

velocities, and torques, drives can be set to produce the proper torque and hold the

position/velocity with small gains. This would compensate for any high-frequency oscillations

(vibrations) that may occur, as the impedance controller works at 40kHz (much faster than <100

Hz).

Raw torque controller - when kP and kD are set to zero, the torque_ff command is equal to the

output controller torque.

Idle - when kP and kD are set to zero, and the torque_ff command is equal to zero, the motor

shaft will be free to rotate. When the drive is disabled it connects all the windings together for

safety. This mode can be useful for enabling free rotation of the shaft, but the rotational energy

shoudl not be too high as the voltages induced in the motor windings coudl break the driver.

The impedance controller is relatively simple and works according to the schematic below:

Velocity Profile
The velocity profile motion mode uses trapezoidal velocity profiles to achieve smooth velocity

changes with predefined acceleration and deceleration. The trajectory generator module interpolates

between two velocity setpoints to achieve constant acceleration.

Skip to main content

Position Profile
The position profile motion mode uses trapezoidal velocity profiles to achieve smooth position

changes with predefined acceleration, deceleration, and velocity. The trajectory generator module

interpolates between two position setpoints to achieve constant acceleration, and linearly changing

velocity.

Skip to main content

Controller implementation

Controller implementation can be useful for simulating the actuators in virtual environments. Please

find the PID and impedance C/C++ language implementations below:

float mab_controller_performPid(PID_controller *c, float act_value)
{

c->error_last = c->error;
c->error = c->target - act_value;
c->integrator += c->error*c->dt;
c->integrator = mab_commons_range(c->integrator, -c->integrator_windup, c->i
c->de = (c->error - c->error_last)/c->dt;
c->output = mab_commons_range((c->kp * c->error + c->ki * c->integrator + c
return c->output;

}
Skip to main content

Motion controller tuning

The best way to get started with tuning is to copy the default gains and tweak them. You can

treat this section as our recommendation for tuning the controllers, but online articles can be

useful as well

The first step to correctly set up the gains is to start with our default gains. There are three sets of

default gains that are set on each motor power up and thus they allow for restoring the actuator to a

default state in case some gains were set incorrectly by the user. These gains are also a great

starting point for user modifications when the actuator has to be used in a specific application

requiring high positioning accuracy or very dynamic movements.

Default gains are set to work with CANdle examples. This way they can be assumed to be

universal but it does not have to always be the case

When something does go wrong during the tuning process just power-cycle the actuator -

the default gains will be restored.

Always keep your safety limits low when experimenting with gains. Gains not suitable for

your system may cause oscillations and unstable operation of the MD-based actuators

float mab_controller_performImpedanceController(Impedance_controller *c, float posit
{

c->output = c->setTorque + c->kp * (c->positionTarget - position) + c->kd *
c->output = mab_commons_range(c->output, -c->outputMax, c->outputMax);
return c->output;

}

Hint

Note

Hint

Warning⚠

Skip to main content

https://2d033567-d193-42c8-9e42-4931131b206f.usrfiles.com/ugd/2d0335_4f52c3bdab9e4b1cbd2cec68e48b7e14.pdf
https://www.motioncontroltips.com/how-are-servo-system-velocity-control-loops-tuned/
https://2d033567-d193-42c8-9e42-4931131b206f.usrfiles.com/ugd/2d0335_4f52c3bdab9e4b1cbd2cec68e48b7e14.pdf

Velocity PID / Velocity Profile

1. Start by slowly increasing kp gain of the controller keeping ki kd and iWindup set to zero

2. increase set iWindup to 1.0 and try increasing ki to see if it helps to reach the setpoint velocity

3. Generally try to avoid using kd

Position PID / Position Profile

1. Tune the Velocity PID first - make sure in Velocity PID mode the actuator is able to follow the

setpoints

2. Start by slowly increasing kp gain of the position controller keeping ki kd and iWindup set to zero

3. Increase set iWindup to 1.0 and try increasing ki to see if it helps to reach the setpoint velocity

4. Generally try to avoid using kd

Impedance PD

1. Increase kp to the point you’re satisfied with the stiffnes of the output shaft (the spring coefficient)

2. Increase kd to the point youre satified with the damping of the output shaft (the damping

coeficient)

3. Avoid setting kd too high - it may cause severe vibrations.

Current PI

Current/torque PI is the lowest-level controller. Its gains are not directly user-configurable, however,

they can be modified using the bandwidth parameter. Please see the calibration section for more

insight on the topic.

Config
MDxx’s config allows for configuring the controller for a specific motor and the application it is used in.

This section will cover the parameters that are used in config files.

Skip to main content

[motor] section

name - actuator name. Max 20 characters

pole pairs - the number of rotor magnets divided by 2. If you are unsure type zero here -

during calibration it will be autodetected. Later on it is advised to retype it after the calibration to

the config file. It can be accessed using mdtool setup info or by register access.

KV - declated KV of the motor - its used when torque constant is set to zero.

torque constant - motor torque constant in Nm/A

gear ratio - gear ratio -> example 6:1 reductor is 0.166666 whereas 1:2 multiplicator is 2

max current - maximum allowable phase (not power supply) current

torque bandwidth - torque bandwidth setting

shutdown temp - temperature threshold in [C] of the motor that will cause a overtemperature
stop. Note: this safety limit works only with a motor thermistor connected. If motor temp is 0C

when mdtool setup info is called, the thremistor is not populated or is not working.

[limits] section

Global limits used to issue warnings or errors.

max torque - maximum allowed torque in Nm

max velocity - maximum allowed velocity in rad/s

max position - maximum position limit in rad

min position - minimum position limit in rad

max acceleration - max acceleration in rad/s^2

max deceleration - max deceleration in rad/s^2

[profile] section

These settings are respected in POSITION PROFILE and VELOCITY PROFILE modes.

acceleration - profile acceleration in rad/s^2

deceleration - profile deceleration in rad/s^2
Skip to main content

velocity - profile velocity in rad/s

[output encoder] section

For more information please refer to output encoder section.

output encoder - valid types: AS5047_CENTER, AS5047_OFFAXIS, MB053SFA17BENT00,

CM_OFFAXIS

output encoder mode - valid modes: STARTUP, MOTION, REPORT, CALIBRATED_REPORT

[position PID] section

Position PID default gains (used at every startup, then can be modified using the C++/Python script,

or register access)

kp - proportional gain

ki - integral gain

kd - derivative gain

windup - integral limit

[velocity PID] section

Velocity PID default gains (used at every startup, then can be modified using the C++/Python script,

or register access)

kp - proportional gain

ki - integral gain

kd - derivative gain

windup - integral limit

[impedance PD] section

Impedance PID default gains (used at every startup, then can be modified using the C++/Python

script, or register access)
Skip to main content

kp - proportional gain

kd - derivative gain

Status
When an abnormal situation takes place the controller sets an error bit indicating a particular error or

warning. The table below lists all available error and warning codes and their descriptions. The

easiest way to check all statuses is to use mdtool. Another way could be to use the CANdle lib

register access and read the statuses, or decode the general “Quick Status” using the CANdle lib

getQuickStatus() function.

Errors and warnings can be cleared by register access, or using mdtool clear command. Please

note that all warnings and only non-critical errors can be cleared.

Quick Status

Quick status provides a general info about errors in each category of statuses. No warnings are

indicated here. Last bit indicatest whether the current target (position or velocity) has been reached.

Error

bit
Error description

0 Main encoder error

1 Output encoder error

2 Calibration encoder error

3 MOSFET bridge error

4 Hardware errors

5 Communication errors

6 Motion errors

8-14 RESERVED

15
Target position (in Position PID / Profile position mode) or velocity (in Velocity PID / Velocity profile mode) reached within position or

velocity window

Skip to main content

Main / Output Encoder Errors

Calibration Errors

Error name
Error

bit
Error description Action to clear it

ERROR_COMMUNICATION 0 MDxx could not communicate with the encoder Check connections

ERROR_WRONG_DIRECTION 1
Indicates the calibrated output encoder direction is

different from the main encoder direction
Recalibrate

ERROR_EMPTY_LUT 2 Indicates the encoder eccentricity table is empty Recalibrate

ERROR_FAULTY_LUT 3
Indicates the encoder eccentricity table is faulty

(contains too large corrections)
Check the setup and recalibrate

ERROR_CALIBRATION_FAILED 4
Calibration failed due to wrong motor <> encoder

setup

Check setup, recalibrate in case of problems

contact MABRobotics

ERROR_POSITION_INVALID 5 Position reading is invalid
Check endcoder physical setup, in case of

problems contact MABRobotics

ERROR_INIT 6 Encoder initialization failed
Check endcoder setup and connection, in case

of problems contact MABRobotics

WARNING_LOW_ACCURACY 30
Encoder position readout accuracy may be lower than

specified

Check endcoder physical setup and reboot the

MDxx

Error name
Error

bit
Error description Action to clear it

ERROR_OFFSET_CAL 0 Problem with the offset determination during calibration Try recalibrating

ERROR_RESISTANCE_IDENT 1 Problem with resistance identification
Try recalibrating or running the `mdtool config

bandwidth` command

ERROR_INDUCTANCE_IDENT 2 Problem with inductance identification
Try recalibrating or running the `mdtool config

bandwidth` command

ERROR_POLE_PAIR_CAL 3 Problem with pole pair detection routine Try recalibrating

ERROR_SETUP 4
Problem with motor config file download, or the setup

parameters themselves

Check the config file again and try to upload one

more time

Skip to main content

Bridge errors

Error name
Error

bit
Error description Action to clear it

ERROR_BRIDGE_COM 0
Communication problem with the

bridge
Contact MABRobotics

ERROR_BRIDGE_OC 1 The bridge detected overcurrent
Lower the current limit, clear the error or restart the

drives

Skip to main content

Hardware errors

Comunication errors

Motion status

ERROR_BRIDGE_GENERAL_FAULT 2 Usually indicates a hardware issue Contact MABRobotics

Error name
Error

bit
Error description Action to clear it

ERROR_OVER_CURRENT 0 Overcurrent detected Lower the current limit, clear the error or restart the drive

ERROR_OVER_VOLTAGE 1 Overvoltage detected
Lower the system voltage, avoid rapid braking in the

system, use a modern PSU, or a LiPo battery

ERROR_UNDER_VOLTAGE 2 Undervoltage detected
Ensure your power supply has enough current capability for

your system

ERROR_MOTOR_TEMP 3
Motor temperature exceeded the limit

set in the config file
Wait for the motor to cool down

ERROR_MOSFET_TEMP 4
MDxx power side exceeded the limit

of 100*C
wait for the MDxx to cool down

ERROR_ADC_CURRENT_OFFSETS 5
Error during adc current offsets

calibration
Usually indicates a hardware error - contact MABRobotics

Error name
Error

bit
Error description Action to clear it

WARNING_CAN_WD 30
Indicates the communication with the host was ended by

the watchdog

make sure candle.end() is called in your script, clear

using mdtool

Error name
Error

bit
Error description Action to clear it

ERROR_POSITION_OUTSIDE_LIMITS 0
Current shaft position is outside the

limits from the config file

Re-home the actuator, set a temporary zero to move it

back into the limits, or increase the limit range, clear

using mdtool

ERROR_VELOCITY_OUTSIDE_LIMITS 1
Velocity exceeded the max velocty

param

Ensure the velocity limit is set to a proper value, clear

using mdtool

WARNING_ACCELERATION_CLIPPED 24
Acceleration command was clipped to

max acceleration at least once
Check acceleration limits, clear using mdtool

WARNING_TORQUE_CLIPPED 25
Torque command was clipped to max

torque at least once
Check torque limits, clear using mdtool

WARNING_VELOCITY_CLIPPED 26
Velocity command was clipped to max

velocity at least once
Check velocity limits, clear using mdtool

WARNING_POSITON_CLIPPED 27

Position command was clipped to

either max or min position at least

once

Check position limits, clear using mdtool

Skip to main content

The following table shows when warnings and errors are issued based on the mode the controller is

currently in:

Utilities

GPIO

All of the MD controllers have two multi-purpose GPIO pins. Currently they have two functionalities:

Auto Brake - in this mode MDxx will automatically engage MAB Robotics’s provided braking

systems via GPIO A pin, please contact us for more information in that regard

GPIO input - in this mode MDxx will output GPIO pin states to state register (userGpioState
0x161)

The GPIO are connected directly to board’s MCU. DO NOT drive this pins higher than +5V

or lower than 0V as this WILL damage the board.

Also the GPIO pins are floating so if you want to use those pins as an external function

switches, do so with proper pull-up/down resistor or push-pull circuitry.

Important

Skip to main content

Controllers

MD80

Skip to main content

MD20

MD80

General parameters

MD80 is a brushless motor controller. It can work with a variety of motors and reducers that can be

precisely matched to the users’ specifications. All MD80 variants are using an advanced motor control

algorithm (FOC), a high-resolution encoder, a high-speed FDCAN communication bus, and a

common communication interface. The controller feratures position PID, velocity PID, impedance,
Skip to main content

profile position and profile velocity operation modes. MD80 can be easily daisy-chained, for easy

connection of many drives in a single control network.

You can easily check your MD80 version using the mdtool setup info command.

General parameters table for MD80 V2.0 and V2.1:

Parameter Value

Input Voltage 10 - 48 VDC

Nominal Input Voltage 24 VDC

Max Input Current 10 A (RMS)

Max Continuous Phase Current 20 A

Max Peak Phase Current (t = 2 s) 80 A

Built-in software-controlled termination resistor optional

FDCAN Baudrate (adjustable) 1/2/5/8 Mbps

Position PID Controller Execution Frequency 1 kHz

Velocity PID Controller Execution Frequency 5 kHz

Impedance Controller Execution Frequency 40 kHz

Torque Control Execution Frequency 40 kHz

Torque Bandwidth (adjustable) 50 Hz - 2.5 kHz

External encoder connector (SPI, RS422) yes

External 5V power supply max current 150 mA

General parameters table for MD80 HW1.1, HV1.3 and older:

Hint

Skip to main content

Connectors pinout

The connectors used in the system on the CAN FD side are MOLEX Micro-Fit series 3.0. Both

connectors are connected in parallel for easy daisy-chaining. The connector pinout is presented

below:

Skip to main content

The colors of the corresponding wires in the Molex socket, as supplied by MAB (looking from the side

of the wires):

Always make sure CAN bus lines are not shorted to the positive power rail. Applying supply

voltage to these pins will cause permanent damage to the controller!

All MD80 versions have the capability to measure the MOSFET and motor temperature. This is to

ensure the safe operation of the driver and motor. The motor shutdown temperature is configurable

up to 140 C max with a hysteresis of 20 C. The driver shutdown temperature is fixed at 100 C with a

hysteresis of 20 C.

∘ ∘ ∘

∘

Warning⚠

Skip to main content

In the case of the MD80 HW V2.0 the MOSFET thermistor is built-in directly under the power stage

and only the motor thermistor connector is available:

For the current version of the board we recommend using NTCMHP10K thermistors. Using

other thermistors may result in imprecise temperature readout.

On older (<2.2) designs NTCMHP100K is recommended.

Since version HW V2.0 the PCB is equipped with an auxiliary connector (picoblade series connector

53048-0650 compatible with 797580006 and 510210600) for communication with output encoders.

The connector pinout is available below:

The connectors in the case of the HW1.1 and HV1.3

Note

Note

Skip to main content

External connector pin functions (RS422 / SPI) are selectable using resistors on the bottom PCB

side.

The auxiliary connector pins are 3.3V tolerant. Applying 5V to these pins will cause

permanent damage to the controller!

The HW2.1 features a separate RS422 connector. Thus the AUX1 connector features only the SPI

singals, while AUX2 is dedicated for the RS422 communication bus.

AUX GPIO A pin can be used as an automatic brake control output signal. This signal when amplified,

can be used to control MAB SLIM electromagnetic brakes. Enabling of this mode is done via

userGpioConfiguration register. When enabled driver will automatically disengage the brake when

enabled.

Warning⚠

Skip to main content

https://www.mabrobotics.pl/product-page/mab-slim-electromagnetic-brake

Skip to main content

We are able to integrate custom functions such as GPIOs for external sensors and indicators. For

more information please contact us: contact@mabrobotics.pl

MD20
The MD20 is a compact brushless motor controller, ideal for small, precise gimbal motors. It offers

multiple control modes, including position PID, velocity PID, impedance, raw torque, profile position,

and profile velocity. The MD20 also supports easy daisy-chaining, allowing seamless integration of

multiple controllers in a single control network.

Skip to main content

https://www.mabrobotics.pl/contact

General parameters

Parameter Value

Nominal Input Voltage Range 24 - 42 VDC

Maximum Input Voltage Range 10 - 48 VDC

Max Input Current 3.1 A

Max Continuous Phase Current w/o cooling 4.5 A

Max Peak Phase Current (t = 2 s) 20 A

Built-in software-controlled termination resistor optional

FDCAN Baudrate (adjustable) 1/2/5/8 Mbps

Position PID Controller Execution Frequency 1 kHz

Velocity PID Controller Execution Frequency 5 kHz

Impedance Controller Execution Frequency 40 kHz

Torque Control Execution Frequency 40 kHz

Torque Bandwidth (adjustable) 50 Hz - 2.5 kHz

External encoder connector (SPI, RS422) yes

External 5V power supply max current 150 mA

Skip to main content

The MD20 is equipped with a custom shunt resistor suited for more precise current sensing.

As a result all the configuration files (.cfg) dedicated for MD20 MUST contain [hardware]

section with shunt resistance parameter equal to 0.004, ie.:

Mechanical data

[hardware]
shunt resistance = 0.004

Important

Skip to main content

Connectors pinout

For power supply and CAN bus connection two 2200980471 Molex Micro-lock connectors are

available. They act as an internal bridge for easy chaining of the drives.

Skip to main content

For external encoder connection via the SPI 530480650 Molex PicoBlade connectors is provided.

For external encoder connection via the RS422 and the GPIO pins utilization 530480810 Molex
PicoBlade connectors could be used.

Skip to main content

Skip to main content

For the current version of the board we recommend using NTCMHP10K thermistors. Using

other thermistors may result in imprecise temperature readout.

Note

Skip to main content

Thermal specification

Thermal performance and efficiency

MD20 is a tiny but high-power, highly integrated motor controller. It creates challenges related to heat

management and thermal performance. Taking this in mind, the design of the PCB is 6 layers to

achieve excellent performance even without any cooling. The used components include small and

efficient power converters and MOSFETs with best-in-class FOM(figure of merit).

The motor controller is only a part of the actuator, so we have done tests in the worst scenarios in a

real setup, to provide valuable and relevant information about performance in the assembled actuator,

instead of the idealized or simulated one.

Power losses and system efficiency

To understand the charts below, we need to distinguish between mechanical power efficiency and

electrical power conversion efficiency.

Mechanical power is the torque exerted by the motor (𝛕) multiplied by the angular velocity (𝝎) of the

shaft. If the shaft is locked in place, the mechanical power will be zero, and thus, the mechanical

power efficiency will also be zero in that scenario.

Electrical power conversion can be explained as the ratio between the power delivered to the electric

motor and the total electric power consumed by the system. In this case, even though the motor’s

mechanical power is zero, the efficiency of the driver can still be greater than zero due to the

conversion of power to heat within the motor.

The scenario where mechanical power is zero is the worst-case scenario for electrical power

conversion efficiency. In this case, all of the energy gets converted into heat.

Skip to main content

As can be seen in the figure, the measured IQ is equal to the Ic current because the motor shaft was

blocked.

Ia, Ib, and Ic are motor phase currents, and Iq is the virtual quantity, which can be understood as the

current in an old-fashioned brushed motor. Two quantities are important to analyze the inverter

efficiency and losses: input power to the motor controller and the energy transferred from the inverter

to the motor windings. Those quantities are the base that tells almost everything about the influence

of the motor controller on the actuator system performance. There is only one exception connected to

the inverter efficiency and the whole system efficiency - its switching frequency. Tuning this parameterSkip to main content

can increase the torque generated from the motor phase current by reducing phase currents THD,

but also increase switching losses. Detailed analysis of these effects is out of the scope of the

documentation, as it is motor-dependent on the system level. The gearbox/torque transfer efficiency

as well.

Returning to the inverter, various losses are mainly related to transistor conduction and switching.

Keeping as the rule to avoid theory and mathematical models, for the MD20 motor controller, which

has a switching frequency of 40 kHz, at 24VDC supply total losses were measured the way described

below.

The motor driver was supplied by the SIGLENT SPS5000X Digital power supply. Measurements of

input Current, Voltage, and Power consumed by the whole setup were taken from this device. The

power of the motor itself was calculated using discrete data of currents and voltages in each phase

measured by the MD20 in each FOC cycle to ensure sampling at the same frequency as the control

loop.

at various currents are collected in the table below:

Skip to main content

During the analysis the idle power consumption of the board came out to be about 0,5W.

Because the input data for the table was taken when all parameters became stable (due to the

temperature interia) we were not able to measure phase currents over 8A because the motor

was overheated.

Input power was measured by the digital power source Siglent SPS5000X. The output power was

computed based on the phase voltages and currents measured with the oscilloscope. Losses were

computed as the difference between input and output power.

The table above shows the losses. The tests described below present how the MD20 handles it.

Thermal tests

To cover all potential cases, three cooling scenarios have been performed:

No additional cooling

Passive cooling

Active air cooling

In each test, the MD20 motor driver was coupled with the MN4004-21 BLDC Motor.

MN4004-21 Motor parameters:

Input current[A] Input power[W]
Respective peak

phase current [A]
Output power[W] Losses[W] Efficiency[%]

0,05 1,25 1 0,63 0,62 50,40%

0,10 2,34 2 1,92 0,42 82,05%

0,17 4,12 3 3,79 0,33 91,99%

0,29 7,06 4 6,58 0,48 93,20%

0,47 11,35 5 10,6 0,75 93,39%

0,70 16,87 6 15,6 1,27 92,47%

1,05 25,17 7 23,2 1,97 92,17%

1,46 35,1 8 32 3,1 91,17%

Skip to main content

To maximize the convection effect and thus simulate the “worst case” of the setup position, the motor

was mounted horizontally, under the MD20 so the heat dissipated by the motor additionally heats the

driver PCB. We did our best to provide usable and relevant data about the performance.

To ensure constant DC current in the motor phases, its shaft was blocked and the control loop was

tweaked so that the current was equally distributed to each phase of the motor.

In each scenario, the tests were repeated for various cases of phase currents. from 0,5A to 5A with

the step of 0,5A, and from 5A to the maximum current (that does not overheat the driver) with the step

of 1A. For each current, the setup was tested until the temperature reached a stable value.

All tests were performed in constant environment conditions, in still air at 25 C ambient temperature.

Before each particular test, the device was powered on and preheated itself to the idle temperature of

about 39°C.

MD20 Temperature was measured with the usage of an onboard thermistor placed on the bottom

layer of the PCB, directly below the MOSFETs.

Test scenario I - no additional cooling.Skip to main content

Temperature vs Time characteristic:

Skip to main content

Summary table:

Skip to main content

file:///home/pawel/mab-github/MD80-x-CANdle-Documentation/_build/html/_images/image6.png
file:///home/pawel/mab-github/MD80-x-CANdle-Documentation/_build/html/_images/image6.png

Test scenario II - passive cooling.

No cooling thermal test summary

Maximum
continuous current

4,5A

Current Stable temperature Time to reach

1A 46°C

~ 1250 s

1,5A 51°C

2A 56°C

2,5A 62°C

3A 68°C

3,5A 78°C

4A 83°C

4,5A 92°C

5A 100°C ~ 980 s

6A 100°C ~ 440 s

7A 100°C ~ 250 s

8A 100°C ~ 120 s

9A 100°C ~ 95 s

10A 100°C ~ 70 s

Skip to main content

Temperature vs Time characteristic:

Skip to main content

Summary table:

Skip to main content

file:///home/pawel/mab-github/MD80-x-CANdle-Documentation/_build/html/_images/image3.png
file:///home/pawel/mab-github/MD80-x-CANdle-Documentation/_build/html/_images/image3.png

During the tests in this scenario, the motor windings were getting warmer much faster than

the MD20 PCB so the tests were stopped after 8A to avoid damaging the motor. The motor

started to produce smoke before the motor controller reached 100 degrees C, so the test

was finished on the 8A.

Test scenario III - active cooling

Passive cooling thermal test summary

Maximum
continuous current

5A

Current Stable temperature Time to reach

1 A 46,5°C ~ 2100 s

1,5A 48,2°C ~ 2100 s

2A 53.8°C ~ 2000 s

2,5A 59,5°C ~ 2000 s

3A 66,3 °C ~ 2000 s

3,5A 72,1°C ~ 2800 s

4A 79,7°C ~ 2600 s

4,5A 88,9°C ~ 2600 s

5A 95,1°C ~ 1850 s

6A 100°C ~ 800 s

7A 100°C ~ 480 s

8A 100°C ~ 325 s

Note

Skip to main content

Temperature vs Time characteristic (note that this characteristic was splitted into two current ranges):

Skip to main content

Skip to main content

file:///home/pawel/mab-github/MD80-x-CANdle-Documentation/_build/html/_images/image8.png
file:///home/pawel/mab-github/MD80-x-CANdle-Documentation/_build/html/_images/image8.png

Summary table:

Skip to main content

file:///home/pawel/mab-github/MD80-x-CANdle-Documentation/_build/html/_images/image5.png
file:///home/pawel/mab-github/MD80-x-CANdle-Documentation/_build/html/_images/image5.png

Active cooling thermal test summary

Maximum
continuous current

13A

Current Stable temperature Time to reach

1 A 33,2°C ~ 170 s

1,5 A 33,6°C ~ 170 s

2 A 34°C ~ 180 s

2,5 A 34,6°C ~ 180 s

3 A 35,4 °C ~ 180 s

3,5 A 36,4 °C ~ 180 s

4 A 37,3 °C ~ 180 s

4,5 A 38,5 °C ~ 200 s

5 A 40°C ~ 230 s

6 A 43,5°C ~ 400 s

7 A 47,5°C ~ 490 s

8 A 51,5°C ~ 580 s

9 A 58,5°C ~ 630 s

10 A 73°C ~ 430 s

11 A 78°C ~ 420 s

12 A 84,9°C ~ 540 s

13 A 94,9°C ~ 540 s

14 A 100°C ~ 280 s

Skip to main content

CANdle and CANdle HAT
CANdle is a converter used to communicate between MD controllers and the host device. Currently,

there are two CANdle versions - CANdle and CANdle HAT.

The first one is a simple version that uses only the USB bus to communicate with the host, whereas

the latter can communicate using USB, SPI, and UART bus, and is easy to integrate with SBCs such

as Raspberry PI. The communication with MD controllers is performed using FDCAN bus.

To achieve the fastest communication speeds you should aim for the USB bus. For more details on

the latency topic please check out the latency section.

Skip to main content

Currently CANdle supports only Linux operating systems.

Principle of operation
CANdle can work in two different modes: CONFIG and UPDATE. When in CONFIG mode, it works as

a traditional translator device between two selected buses - USB/SPI/UART and FDCAN. This mode

is used to set up the drives and prepare them for a low-latency operation in the UPDATE mode.

When the configuration is done the user calls candle.begin() which starts a low-latency continuous

connection with the MD controllers. In the UPDATE mode, you are not allowed to call the config

functions. To make them easier to recognize, each config function starts with a config keyword. The

user exits the UPDATE mode using candle.end() method.

When in Update mode the communication speed is dictated by the number of drives attached to the

bus. Please see the latency section for maximum communication speeds.

Generally, a program using CANdle should follow the workflow below:

Creating a Candle object creates a class that will hold all the data and provides an API for the user.

During the creation of the class, the software will attach itself to the ttyACMx port used by the

CANdle, or SPI/UART bus if CANdle HAT is considered. It will also perform a reset operation on the

device and set up basic parameters. This ensures that the device is in the known state at the start of

the program. When an object is created, the CANdle is in the CONFIG state.

Now the configuration of the drives can be done. As a rule of thumb, all class methods starting with

the word ‘config’ can be used here. They do not require adding MDxx to the update list, just require

an ID of the drive to talk to. This is a good place to set current limits, change FDCAN parameters, or

save data to flash.

Important

Skip to main content

This is also a good place to call Candle::ping() , this will trigger the CANdle device to

send an FDCAN frame to all valid FDCAN IDs. The method will return a vector of all IDs that

have responded. This can be used to check if all the drives have power and if all

communication is set up correctly.

The next step is adding MDs to the update list. To do so, use Candle::addMd80() method, with an

FDCAN ID (drive ID) as an argument. This will trigger CANdle to quickly check if the drive is available

on the bus at the ID, and if it is, the CANdle device will add the drive to its internal list and send an

acknowledgment to the CANdle lib. If the drive is successfully added the addMd80() method will add

this particular MDxx to its internal vector for future use and return true.

When all drives have been added, the drives should be ready to move. This can be done with

methods starting with the “control(…)” keyword. Firstly the control mode should be set, then the zero

position set (if desired), and finally the drives can be enabled by using

Candle::controlMd80Enable() method.

Sending an ENABLE frame will start the CAN Watchdog Timer. If no commands follow, the

drive will shut itself down.

When all drives are enabled, Candle::begin() can be called. This will set the CANdle (both device

and library) to UPDATE state. The device will immediately start sending command frames to the MDs.

From now on the library will no longer accept config* methods. Right now it is up to the user to decide

what to do. After the first 10 milliseconds, the whole MDxx vector will be updated with the most recent

data from MDs and the control code can be executed to start moving the drives. Individual drives can

be accessed via Candle::md80s vector. The vector holds instances of ‘Md80’ class, with methods

giving access to every MD series motor controller control mode. Latest data from md80’s responses

can be accessed with Md80::getPosition() , Md80::getVelocity() , Md80::getTorque() ,

Md80::getErrorVector() .

Note

Note

Skip to main content

As the communication is done in the background, it is up to the user to take care of the

software timing here. If you for example set a position command, but don’t put any delay

after it, the program will get to an end, disabling the communication and the servo drives,

without you seeing any movement!

When the control code finishes, the Candle::end() method should be called. This will ensure a

‘clean exit’ meaning a properly closed communication on both USB and FDCAN side.

Candle::begin() can be called later to resume communication if needed.

USB bus

The USB bus is the most common one, used in both CANdle and CANdle HAT. This is one of the

slowest communication bus when it comes to performance, due to the non-realtime nature of the

host, however, it’s the easiest one to set up and test. Since the USB communication interface is not

well-suited for real-time applications due to random host delays the update rates are dependent on

your master controller device.

We highly recommend using the USB bus set up for the first run.

SPI bus

The SPI bus is only available on CANdle HAT devices. It’s the fastest possible bus that can be used

to communicate with the MD series motor controller controllers using CANdle HAT. Together with the

RT-PATCH’ed kernel of the system, you will get the best performance.

CANdle HAT in SPI mode works with all FDCAN speeds, however, we advise setting it to

8M for the best performance.

Note

Hint

Hint

Skip to main content

Since it needs some additional configuration on Single Board Computers such as Raspberry

PI, we recommend starting playing with it after getting accustomed to the ecosystem using

the USB bus.

UART

The UART bus is only available on CANdle HAT devices. Its speed on Raspberry PI microcomputers

with CANdle HAT is comparable to that of USB, so it should be only used as an emergency bus when

the SPI and USB ports are not available.

CANdle HAT in UART mode works with all FDCAN speeds, however, we advise setting it to

8M for the best performance.

Using CANdle and CANdle HAT

PC (USB bus)

The library does not require any additional software to be functional, It can work as-is. However, to

make full use of it we recommend using setserial package (for increasing maximal access frequency

to the serial port used for communication with CANdle). To install it please call:

To enable access to CANdle from userspace, the user should be added to dialout group by calling:

If this is not possible, devices access level can be granted by:

sudo apt install setserial

sudo usermod -a -G dialout <user> # where <user> is current username

Note

Note

Skip to main content

If this is also not possible, programs that use CANdle (including examples), can be launched with

sudo.

SBC (USB/SPI/UART)

Running CANdle or CANdle HAT using a USB bus on SBC is identical to running it on a Linux PC

(section above). However, when using SPI or UART a few other requirements have to be met. We will

guide you through the setup process on Raspberry PI 4.

When using SBCs other than Raspberry the process may vary and should be performed

according to the board manual or with the help of the manufacturer.

SPI

To enable the SPI bus you should call:

uncomment the following line, save the file

and reboot:

to make sure SPI is enabled call:

sudo chmod 777 /dev/ttyACMx # where x is CANdle port number, usually 0

sudo nano /boot/config.txt

dtparam=spi=on

sudo reboot

ls /dev | grep spi

Note

Skip to main content

you should see an output similar to this:

UART

To enable the UART bus you should call:

and add the following lines on the end of the file

after that open the cmdline.txt

and remove the part:

and reboot:

Latency
The latency was measured using the mdtool test latency 8M command. Since the CAN frames

are synchronized with master device frames the update rate of the master is the same as MD. The

spidev0.0
spidev0.1

sudo nano /boot/config.txt

enable_uart=1
dtoverlay=disable-bt

sudo nano /boot/cmdline.txt

console=serial0,115200

sudo reboot

Skip to main content

setup was tested on a PC using only USB bus (PC Ideapad Gaming 3 AMD Ryzen 7 4800H) and

Raspberry PI 3b+ with RT PATCH (4.19.71-rt24-v7+) on USB, SPI, and UART bus.

High task priority was achieved using the following snippet in the mdtool test latency function:

To be able to change task priority be sure to call the test with sudo .

To change a running task priority use the snippet below. It can be useful when your program cannot

be run directly with sudo - for example, when dealing with ROS nodes.

During testing on Raspberry PI SBCs we have found out that isolating a CPU core (isolcpus)

specifically for the CANdle process did not result in a performance increase - rather made it less

performant.

 struct sched_param sp;
 memset(&sp, 0, sizeof(sp));
 sp.sched_priority = 99;
 sched_setscheduler(0, SCHED_FIFO, &sp);

CONTROL_PID=$(sudo pidof -s <NAME_OF_YOUR_EXECUTABLE>)
CONTROL_PRIORITY=99
sudo chrt -f -p ${CONTROL_PRIORITY} ${CONTROL_PID}

Skip to main content

When dealing with the MD x CANdle ecosystem for the first time we advise using the USB

bus that is available on both CANdle and CANdle HAT devices.

Software Pack
The MD x CANdle software pack consists of a few modules. All of them are based on the main

CANdle C++ library which takes care of the low-level communication and provides API for high-level

software.

MDtool
MDtool is a console application for configuring and performing basic diagnostics on MD drives via

CANdle. It is designed as a complementary tool for APIs, reducing the overhead when setting up the

drives for the first time or reconfiguring them. It uses the CANdle C++ library on its backend.

Installation

The easiest way to install the MDtool is to select the appropriate *.deb package from the MDtool

GitHub repo releases page (compliant with your system’s architecture). To install after the download

simply call:

After the install please make sure the current user is added to the dialout group using the command:

if it wasn’t, please reboot the PC

sudo apt install ./mdtool_xx-x_xx.deb

sudo adduser <current user> dialout

sudo reboot

Note

Skip to main content

https://github.com/mabrobotics/mdtool/releases
https://github.com/mabrobotics/mdtool/releases

It is also recommended to install the setserial package which allows for higher communication

speeds:

Be sure to call

to configure MDtool for the desired communication bus before first use, if you’re using CANdle HAT

and SPI or UART bus.

In case the CANdle device still doesn’t work, make sure a /dev/ttyACM0 device is listed when you

call:

For the command prompt to work after the installation you have to restart the terminal

window

Commands

mdtool bus <bus> <device>

MDtool is able to work with CANdle and CANdle HAT. This is why before the first use it has to be

configured for a particular communication bus. Use the bus command to set it to USB, SPI, or UART,

based on which device you own. The default bus setting is USB. You don’t have to repeat this setting

unless you want to change the current communication bus. The device parameter is optional and can

be used in case of the UART and SPI bus, if the default device (/dev/spidev0.0 in case of SPI or

/dev/ttyAMA0 in case of UART) is not suitable for your application.

sudo apt install setserial

mdtool bus <SPI/UART/USB>

ls /dev/ttyACM*

Note

Skip to main content

mdtool ping <baud>

MDtool is able to discover the drives that are connected to the CAN bus. You can ping the drives at a

specific speed (1M/2M/5M/8M) or just use the ‘all’ keyword for pinging all speeds in one go.

CANdle does not support working with drives configured with different CAN speeds on the

same CAN bus – please make sure when “mdtool ping all” command is executed, all

discovered drives lie in a single speed category.

mdtool config zero <ID>

This command sets the current motor position to zero - from the moment this command is called all

encoder measurements are referenced from the current position.

This setting has to be saved to be preserved after power down! Please see the config save

command.

mdtool config can <current ID> <new ID> <baud> <watchdog period
[ms]> <termination>

This command is used to change MD parameters such as CAN ID, CAN speed, and CAN watchdog.

CAN IDs should be in range <10:2000>

Baud should be one of the available speeds (1M/2M/5M/8M)

Watchdog period should be in range <1:2000> ms, 0 disables the watchdog. For more

information on CAN watchdog please refer to section FDCAN Watchdog Timer.

Termination should be either 1 to turn the termination on or 0 to turn the termination off.

Software-controlled termination is available since version HW V2.0. It is an optional setting -

when not typed in the command this setting will default to zero (off).

Note

Note

Warning⚠

Skip to main content

This setting has to be saved to be preserved after power down! Please see the mdtool

config save command.

mdtool config current <ID> <current>

This command is used to set the maximum phase current that is allowed to flow through the motor

when high torques are commanded. By default, the maximum current is set to a rather low value that

will not lead to motor or driver burnout. However, this also limits the motor’s maximum torque

capabilities. Using the config current command one can increase the maximum current. For the

absolute maximum please refer to maximum ratings section.

The warranty does not include burnout actions due to too high current settings. For max

continuous driver current please refer to the general parameters and safety limits sections.

This setting has to be saved to be preserved after power down! Please see the config save

command.

mdtool config bandwidth <ID> <torque bandwidth in Hz>

This command can be used to change the torque bandwidth without recalibrating the actuator. For

more information on the torque bandwidth please see the section about calibration.

This setting has to be saved to be preserved after power down! Please see the config save

command.

mdtool config save <ID>

Note

Warning⚠

Note

Note

Skip to main content

For the config commands to take action after the next power cycle a save command has to be

executed. This command saves the current drive’s settings to the non-volatile FLASH memory.

mdtool setup calibration <ID>

This command runs the basic calibration routine. During calibration, the drive has to be able to rotate

freely and the power supply should be able to deliver at least 1A of current. For more detail on the

calibration process please refer to the calibration section.

mdtool setup calibration_out <ID>

This command runs the output encoder calibration routine. During output encoder calibration, the

drive has to be able to rotate for at least two full rotations of the output shaft and the power supply

should be able to deliver at least 1A of current. For more detail on the calibration process please refer

to the output encoder calibration section.

mdtool setup motor <ID> <*.cfg>

This command is used to write a new motor config. For the config file argument one of the *.cfg files

from ~/.config/mtool/mdtool_motors/ directory should be passed. Check out the description below for

more information on the respective config fields:

Skip to main content

mdtool setup info <ID> [all]

This command is used to read the motor internal parameters. Use an optional ‘all’ keyword at the end

of the command to read full parameter set. An example command output might look like this:

Skip to main content

Reading the errors is the easiest way of debugging possible problems with the drive. For errors

description please visit the status section.

mdtool blink <ID> Skip to main content

This command is mostly used to find an MD drive on a long CAN bus using its ID – the command

makes the drive flash its onboard LEDs for easy identification.

mdtool test move <ID> <position>

This command is used to test the actuator movement in impedance mode. It helps to assess if the

calibration was successful and if there are no issues visible to the naked eye. The position argument

is always the amount of position for the motor to be moved from the current position.

mdtool test move absolute <ID> <target position> <velocity>
<acceleration> <deceleration>

This command is used to test the actuator movement in profile position mode. The motor is going to

use acceleration parameter to speed up to velocity parameter and then deceleration

parameter to slow down and reach the target position . The move is absolute to the currently set

zero position. By providing only the ID and target_velocity the MDxx will use the default

acceleration, deceleration and velocity parameters.

mdtool test latency <baudrate>

This command is used to test the PC<>CANdle communication speed which greatly affects the

PC<>MD communication speed. The higher the measured frequency the better.

mdtool test encoder <type> <ID>

This command is used to check how accurate a praticular encoder was calibrated. The ‘type’

argument can be either ‘main’ for onboard encoder, or ‘output’ for output encoder. This command runs

a routine that makes one full rotation of the shaft (either motor or output shaft, depending on the

chosen encoder type) and after completing fills up the max, min and standard deviation errors that

can be accessed using the mdtool setup info all command.

Skip to main content

Main encoder errors can be larger for non-sinusoidal motors (BLDC motors) because of

their back-emf waveform shape. If you care about very precise positioning we advise using

PMSM motors (sinusoidal).

mdtool encoder <ID>

This command is useful when one wants to measure the position of the actuator in the current setup

(without writing a custom script). After the command is executed the screen shows the current

position of the actuator’s shaft and it does so until you press Ctrl + C.

mdtool clear error <ID>

This command is used to clear non-critical MDxx errors.

mdtool clear warning <ID>

This command is used to clear all MDxx warnings.

mdtool register read <ID> <regID>

This command is used to read a register from MDxx controller.

mdtool register write <ID> <regID> <value>

This command is used to write a register with value param.

mdtool reset <ID>

This command is used to reset an MDxx controller.

Warning⚠

Skip to main content

CANdle C++ library
CANdle C++ library is the base module of software that all other modules are based on. It takes care

of low-level communication between the host and the MD controllers. Using the CANdle C++ library

directly is the best option to reach the full performance of the drives when it comes to communication

frequency between the host and MD controllers.

Quick start

The quick startup guide includes cloning the repo, building and running the examples. First, you

should clone the candle repo from the MAB Robotics GitHub page to your local machine. Then, make

sure you’re in the main directory candle/ and run the following commands:

starting from the top one these commands: create a build directory, go into the build directory,

generate makefiles using CMake and compile the source code using make. After executing these

commands you should be able to see the compiled examples in the candle/build/ directory. To run one

of them use the following command:

where X is the number of the example.

Building as a static lib

Candle C++ library can be built as a static or shared object library. In the quick startup guide, we used

the default settings, thus the library was compiled to a shared object file. In case you’d like to build it

for a static lib you should pass additional arguments to the cmake .. command:

mkdir build
cd build
cmake ..
make

./exampleX

cmake .. -DCANDLE_BUILD_STATIC=TRUESkip to main content

After executing this command you should be able to see the following CMake output:

In case you’d like to go back to shared lib just call:

or delete the build directory contents and call cmake .. again (the default library type is shared). This

is what the cmake output looks like when reconfiguring for shared lib:

CANdle Python library
CANdle Python library is a translated version of the C++ library using pybind11. The package can be

found on PyPi: https://pypi.org/project/pyCandleMAB/ and installed using pip:

cmake .. -DCANDLE_BUILD_STATIC=FALSE

Skip to main content

https://pypi.org/project/pyCandleMAB/

It can be used to quickly start playing with the actuators, without the need to build the C++ software

pack. Example usage of Python examples is shown in the getting started guide. To achieve the best

performance in low latency systems we advise using the C++ libraries directly.

We distribute the binaries as well as sources - in case your platform is not recognized with

the available binaries pip will try to build and install the library from the source.

CANdle ROS/ROS2 nodes

TL;DR: MD x CANdle - ROS/ROS2 startup guide

While C++ API is the most flexible way of interfacing with CANdle/MDxx, ROS/ROS2 APIs are also

available. These have been designed as standalone C++ nodes that use the CANdle library on the

backend. The nodes are designed to be used with already configured drives, thus functions such as

setting FDCAN parameters are unavailable via ROS/2 API. We recommend configuring all drives first

using MDtool or C++/Python API.

Nodes use ROS/2 services to perform initialization and enable/disable the drives. The initialization

services available are:

There are also two additional services for enabling/disabling the drives:

python3 -m pip install pyCandleMAB

/add_md80s
/zero_md80s
/set_mode_md80s

/enable_md80s
/disable_md80s

Note

Hint

Skip to main content

https://www.youtube.com/watch?v=bIZuhFpFtus&t=1s
https://www.youtube.com/watch?v=6sLQNaJKuJY&t=3s

Once the drives are enabled via enable_md80s service, the nodes will ignore all calls to services

other than disable_md80s . When enabled, communication switches from service-based to topic-

based. The nodes will publish to the topic:

And will subscribe to topics:

Quick startup guide - ROS
Let’s run a simple example of the candle ROS node. In order to run the node, clone it into your local

ROS workspace in the src folder. After that, build it with ‘catkin’ and run using the ‘rosrun’ command.

Be sure to source your workspace with source devel/setup.sh prior to running the package, and in

each new terminal window you’re going to send commands related to the node.

First, start the roscore with the roscore command. Then run the node with arguments that fit your MD

x CANdle setup. The general syntax is:

for more information on how to run the node you can call:

Example output from the terminal after launching the node:

/md80/joint_states

/md80/motion_command
/md80/impedance_command
/md80/velocity_pid_command
/md80/position_pid_command

rosrun candle_ros candle_ros_node <BUS> <FDCAN baud>

rosrun candle_ros candle_ros_node --help

Skip to main content

In this example, we will be working with USB bus and 8M FDCAN baudrate.

Adding drives

Firstly, the node should be informed which drives should be present on the FDCAN bus. This can be

done via /add_md80s service . For example:

Should produce the following output:

informing, that both drives (ids: 200 and 800), have been successfully contacted, and were added to

the node’s drives list. You can also look for status messages in the terminal window where the node

was started:

According to the status messages we have added two MD series actuators.

Set mode

Next the desired control mode should be selected. This is accomplished with /set_mode_md80s

service. For example:

Should produce:

rosservice call /add_md80s "drive_ids: [200, 800]"

drives_success: [True, True]
total_number_of_drives: 2

rosservice call /set_mode_md80s "{drive_ids: [200, 800], mode:["IMPEDANCE", "IMPEDAN

Skip to main content

Informing that for both drives mode has been set correctly.

Set Zero

Often when starting, setting a current position to zero is desired. This can be accomplished with a call

to /zero_md80s service.

Enabling/Disabling drives

Using services /enable_md80s and /disable_md80s the drives and the node publishers and

subscribers can be enabled/disabled.

After calling /enable_md80s service, no calls to services other than /disable_md80s

should be done.

After enabling, the node will publish current joint states to /joint_states at a frequency dependent

on a currently chosen communication bus and speed mode. Joint names are generated based on

drive ID, for example, a drive with id 546 will be called Joint 546 .

The node will also listen for the messages on topics for controlling the drives. All of the above topics

are listened to all the time, but currently applied settings are dependent on the MD controller mode

set before enabling.

drives_success: [True, True]

rosservice call /zero_md80s "{drive_ids:[200, 800]}"

rosservice call /enable_md80s "{drive_ids:[200, 800]}"

rosservice call /disable_md80s "{drive_ids:[200, 800]}"

Note

Skip to main content

Controlling drives

Controlling the drives is done via the four topics listed above. For commands to be viable, all fields of

each message must be filled properly. For example, to set up custom gains for IMPEDANCE mode

use:

Example set up of custom gains for POSITION PID mode:

Example set up of custom gains for VELOCITY PID mode:

Setting desired position, velocity, and torque is done via /md80/motion_command topic. Note that for

it to take effect, all fields in the message should be correctly filled. For example, to move the drives in

impedance mode, it is possible to use the following command

Quick start - ROS2
Let’s run a simple example of the candle ROS2 node. In order to run the node, clone it into your local

ROS2 workspace. After that, build it with colcon and run using the ros2 run command. Be sure to

source your workspace with source install/setup.bash prior to running the package, and in each

new terminal window you’re going to send commands related to the node.

First, let’s run the node with arguments that fit your MD x CANdle setup. The general syntax is:

rostopic pub /md80/impedance_command candle_ros/ImpedanceCommand "{drive_ids:[200, 8

rostopic pub /md80/position_command candle_ros/PositionPidCommand "{drive_ids: [200,

rostopic pub /md80/velocity_command candle_ros/VelocityPidCommand "{drive_ids: [200,

rostopic pub /md80/motion_command candle_ros/MotionCommand "{drive_ids:[81,97], targ

ros2 run candle_ros2 candle_ros2_node <BUS> <FDCAN baud>

Skip to main content

for more information on how to run the node you can call

Example output from the terminal after launching the node:

In this example, we will be working with a USB bus and 8M FDCAN baudrate.

Adding drives Firstly, the node should be informed which drives should be present on the FDCAN

bus. This can be done via /candle_ros2_node/add_md80s service. Note: Do not forget to source

your ros2 workspace in new terminal window For example

Should produce the following output: response:

informing, that both drives (ids: 200 and 800), have been successfully contacted, and were added to

the node’s drives list. You can also look for status messages in the terminal window where the node

was started:

According to the status messages we have added two MD actuators.

ros2 run candle_ros2 candle_ros2_node --help.

ros2 service call /candle_ros2_node/add_md80s candle_ros2/srv/AddMd80s "{drive_ids:

candle_ros2.srv.AddMd80s_Response(drives_success=[True, True], total_number_of_drive

Skip to main content

Set mode

Next the desired control mode should be selected. This is accomplished with

/candle_ros2_node/set_mode_md80s service.

For example:

Should produce:

Informing that for both drives mode has been set correctly.

Set Zero

Often when starting, setting a current position to zero is desired. This can be accomplished with a call

to /candle_ros2_node/zero_md80s service.

Enabling/Disabling drives

Using services /candle_ros2_node/enable_md80s and /candle_ros2_node/disable_md80s the

drives and the node publishers and subscribers can be enabled/disabled.

After calling /candle_ros2_node/enable_md80s service, no calls to services other than

/candle_ros2_node/disable_md80s should be done.

ros2 service call /candle_ros2_node/set_mode_md80s candle_ros2/srv/SetModeMd80s "{dr

response:
candle_ros2.srv.SetModeMd80s_Response(drives_success=[True, True])

ros2 service call /candle_ros2_node/zero_md80s candle_ros2/srv/GenericMd80Msg "{driv

Note

Skip to main content

After enabling, the node will publish current joint states to /joint_states at a frequency dependent

on a currently chosen communication bus and speed mode. Joint names are generated based on

drivie ID, for example, drive with id 546 will be called Joint 546 .

The node will also listen for the messages on topics for controlling the drives. All of the above topics

are listened to all the time, but currently applied settings are dependent on the MD controller mode

set before enabling.

Controlling drives

Controlling the drives is done via the four topics listed above. For commands to be viable, all field of

each message must be filled properly. For example, to set up custom gains for IMPEDANCE mode

use:

Example set up of custom gains for POSITION PID mode:

Example set up of custom gains for VELOCITY PID mode:

Setting desired position, velocity, and torque is done via /md80/motion_command topic. Note that for

it to take effect, all fields in the message should be correctly filled. For example, to move the drives in

impedance mode, it is possible to use the following command

ros2 service call /candle_ros2_node/enable_md80s candle_ros2/srv/GenericMd80Msg "{dr

ros2 service call /candle_ros2_node/disable_md80s candle_ros2/srv/GenericMd80Msg "{d

ros2 topic pub /md80/impedance_command candle_ros2/msg/ImpedanceCommand "{drive_ids:

ros2 topic pub /md80/position_pid_command candle_ros2/msg/PositionPidCommand "{drive

ros2 topic pub /md80/velocity_pid_command candle_ros2/msg/VelocityPidCommand "{drive

ros2 topic pub /md80/motion_command candle_ros2/MotionCommand "{drive_ids: [200, 800

Skip to main content

MD FDCAN communication
The easiest way to communicate with MD controllers is to use a CANdle device connected to a PC.

Even though we are aware some customers want to integrate the MD controllers in their product with

minimal setup to reduce the costs and the system’s complexity. This manual will guide you through

the process of communicating with MD actuators from your custom FDCAN-capable master

controller.

Hardware requirements
The main requirement for the host system is to be equipped with an FDCAN peripheral (either a built-

in one or an external one) and an FDCAN transceiver capable of speeds up to 8Mbps. Lower

maximum speed transceivers can be used as well, however for the cost of limited update rates.

Depending on your custom setup you should be able to integrate a 120 ohm terminating resistor on

both ends of your CAN bus.

MD controllers from version 2.0 can be upgraded to software controlled termination. Please

contact us for more information

Communication Structure
The communication stack is based on a register access using two frames - register read and register

write. The list of available registers can be found at the end of this chapter. All fields are little-endian -

least significant byte first, and all float fields are 4 bytes long encoded in IEEE-754 standard.

Default response

The default response is sent by the drive in case a register write operation was successful.

Note

Skip to main content

In case the operation initiated by a frame was unsuccessful the MDxx will not respond.

Write register frame

Write register frame is used to modify values of the user-modifiable registers. Only registers with write

access can be modified.

Params:

regID (uint16_t) - first register ID (please see the end of this section)

value (uint8_t/uint16_t/uint32_t/float/char[]) - first register value to be written

regID (uint16_t) - second register ID (please see the end of this section)

value (uint8_t/uint16_t/uint32_t/float/char[]) - second register value to be written

… (up to 64 bytes total)

When all registers write operations succeed the drive will respond with default response.

Read Register Frame

Read register command is used to retrieve certain register values. The actuator will respond with a

frame consisting of the addresses and values of the registers issued in the master request. The

master request should have the following form:

When all read operations succeed the 0x00 fields will be filled with appropriate register data when

transmitted back to master by the MDxx controller.

BYTE 0 BYTE 1-2 BYTE 3 BYTE 4-7 BYTE 8-11 BYTE 12-15 BYTE 16-19 BYTE 20-23

NAME
FRAME

ID

QUICK

STATUS

MOTOR

TEMPERATURE

MAIN ENCODER

POSITION

MAIN ENCODER

VELOCITY

MOTOR

TORQUE

OUTPUT

ENCODER

POSITION

OUTPUT

ENCODER

VELOCITY

TYPE uint8_t uint16_t uint8_t [*C] float [rad] float [rad/s] float [Nm] float [rad] float [rad/s]

VALUE 0x0A
0x0000 -

0xFFFF
0 - 255 - - - - -

FRAME NAME DRIVE ID LENGTH BYTE 0 [ID] BYTE 1 BYTE 2-3 BYTE 4-X BYTE X+1-X+2 BYTE X+4-X+Y

WRITE_REGISTER 10-999 X (64 max) 0x40 0x00 reg ID value reg ID value

FRAME NAME DRIVE ID LENGTH BYTE 0 [ID] BYTE 1 BYTE 2-3 BYTE 4-X BYTE X+1-X+2 BYTE X+4-X+Y

READ_REGISTER 10-999 X (64 max) 0x41 0x00 reg ID 0x00 reg ID 0x00

Skip to main content

Frame payload length must not exceed 64 bytes.

FRAME NAME DRIVE ID LENGTH BYTE 0 [ID] BYTE 1 BYTE 2-3 BYTE 4-X BYTE X+1-X+2 BYTE X+4-X+Y

Response to register read 10-999 X (64 max) 0x41 0x00 reg ID reg value reg ID reg value

Warning⚠

Skip to main content

Available registers
reg name address read/write size limits description

canId 0x001 RW uint32_t [10-2000] FDCAN bus id number

canBaudrate 0x002 RW uint32_t [1e6;2e6;5e6;8e6] FDCAN bus baudrate

canWatchdog 0x003 RW uint16_t [0-2500] FDCAN bus watchdog period in ms

canTermination 0x004 RW uint8_t [0-1] CAN termination (available upon request)

motorName 0x010 RW char[24] - motor name

motorPolePairs 0x011 RW uint32_t [2;225] motor pole pair count

motorKt 0x012 RW float >0 motor torque constant

motorKt_a 0x013 RW float >0 optional parameter for phase specific torque constant

motorKt_b 0x014 RW float >0 optional parameter for phase specific torque constant

motorKt_c 0x015 RW float >0 optional parameter for phase specific torque constant

motorIMax 0x016 RW float
[1 - peak controller

current]
maximum phase current

motorGearRatio 0x017 RW float -
actuator gear ratio (ex 2:1 should be 0.5) <1 - reducer >1 -

multiplier

motorTorqueBandwidth 0x018 RW uint16_t [50-2500] torque bandwidth in Hz

motorFriction 0x019 RO float32 - UNUSED

motorStiction 0x01A RO float32 - UNUSED

motorResistance 0x01B RO float [5mOhm-20Ohm] motor resistance in d axis

motorInductance 0x01C RO float [5nH-100mH] motor inductance in d axis

motorKV 0x01D RW uint16_t - motor KV rating [RPM/V]

motorCalibrationMode 0x01E RW uint8_t [0;1] FULL = 0, NOPPDET = 1

motorThermistorType 0x01F RW uint8_t - -

outputEncoder 0x020 RW uint8_t [0;1;2;3]

NONE = 0, AS5047_CENTER = 1, AS5047_OFFAXIS = 2,

MB053SFA17BENT00 = 3, CM_OFFAXIS = 4,

M24B_CENTER = 5, M24B_OFFAXIS = 6

outputEncoderDir 0x021 RW uint8_t 0 RESERVED

outputEncoderDefaultBaud 0x022 RW uint32_t 115200
optional parameter for setting default output encoder

baudrate

outputEncoderVelocity 0x023 RO float - output encoder velocity in rad/s (calculated in a 5kHz loop)

outputEncoderPosition 0x024 RO float - output encoder position in rad (read in 5kHz loop)

outputEncoderMode 0x025 RW uint8_t [0;1;2;3;4]
NONE = 0, STARTUP = 1, MOTION = 2, REPORT = 3,

MAIN = 4

outputEncoderCalibrationMode 0x026 RW uint8_t [0;1] FULL = 0, DIRONLY = 1

motorPosPidKp 0x030 RW float - position PID proportional gain

motorPosPidKi 0x031 RW float - position PID integral gain

motorPosPidKd 0x032 RW float - position PID derivative gain

motorPosPidWindup 0x034 RW float - position PID integral windup limitSkip to main content

reg name address read/write size limits description

motorVelPidKp 0x040 RW float - velocity PID proportional gain

motorVelPidKi 0x041 RW float - velocity PID integral gain

motorVelPidKd 0x042 RW float - velocity PID derivative gain

motorVelPidWindup 0x044 RW float - velocity PID integral windup limit

motorImpPidKp 0x050 RW float - impedance PD proportional gain

motorImpPidKd 0x051 RW float - impedance PD derivative gain

mainEncoderVelocity 0x062 RO float - main encoder velocity in rad/s (calculated in a 40kHz loop)

mainEncoderPosition 0x063 RO float - main encoder position in rad (read in 40kHz loop)

motorTorque 0x064 RO float - motor output shaft torque in Nm (read in 40kHz loop)

runSaveCmd 0x080 WO uint8_t other than 0 to run save non-volatile memory

runTestMainEncoderCmd 0x081 WO uint8_t other than 0 to run runs main encoder test routine

runTestOutputEncoderCmd 0x082 WO uint8_t other than 0 to run runs output encoder test routine

runCalibrateCmd 0x083 WO uint8_t other than 0 to run runs main calibration routine

runCalibrateOutputEncoderCmd 0x084 WO uint8_t other than 0 to run runs output encoder calibration routine

runCalibratePiGains 0x085 WO uint8_t other than 0 to run runs current PI loop calibration routine

runRestoreFactoryConfig 0x087 WO uint8_t other than 0 to run reverts config to factory state

runReset 0x088 WO uint8_t other than 0 to run resets the controller

runClearWarnings 0x089 WO uint8_t other than 0 to run clears all warnings

runClearErrors 0x08A WO uint8_t other than 0 to run clears non-critical errors

runBlink 0x08B WO uint8_t other than 0 to run blinks onboard LEDs

runZero 0x08C WO uint8_t other than 0 to run sets new zero position

runCanReinit 0x08D WO uint8_t other than 0 to run reinitializes can peripheral

calOutputEncoderStdDev 0x100 RO float - output encoder test result (standard deviation)

calOutputEncoderMinE 0x101 RO float - output encoder test result (min error)

calOutputEncoderMaxE 0x102 RO float - output encoder test result (max error)

calMainEncoderStdDev 0x103 RO float - main encoder test result (standard deviation)

calMainEncoderMinE 0x104 RO float - main encoder test result (min error)

calMainEncoderMaxE 0x105 RO float - main encoder test result (max error)

positionLimitMax 0x110 RW float - maximum valid position

positionLimitMin 0x111 RW float - minimum valid position

maxTorque 0x112 RW float - maximum torque

maxVelocity 0x113 RW float - maximum velocity

maxAcceleration 0x114 RW float - maximum acceleration

maxDeceleration 0x115 RW float - maximum deceleration

profileVelocity 0x120 RW float - profile velocity

profileAcceleration 0x121 RW float - profile acceleration

profileDeceleration 0x122 RW float - profile deceleration

quickStopDeceleration 0x123 RW float - quick stop deceleration in case of a non-critical error
Skip to main content

reg name address read/write size limits description

positionWindow 0x124 RW float - position window within position is considered to be reached

velocityWindow 0x125 RW float - velocity window within velocity is considered to be reached

motionModeCommand 0x140 WO uint8_t -

commands a motion mode change: IDLE = 0x00,

POSITION_PID = 0x01, VELOCITY_PID = 0x02,

RAW_TORQUE = 0x03, IMPEDANCE = 0x04,

POSITION_PROFILE = 0x07, VELOCITY_PROFILE = 0x08

motionModeStatus 0x141 RO uint8_t - shows the currently set motion mode

state 0x142 RW uint16_t - returns the internal state machine state of the controller

targetPosition 0x150 RW float - sets target position in rad

targetVelocity 0x151 RW float - sets target velocity in rad/s

targetTorque 0x152 RW float - sets target torque in Nm

userGpioConfiguration 0x160 RW uint8_t - 0 - OFF, 1 - AUTO-BRAKE, 2 - GPIO INPUT

userGpioState 0x161 RO uint16_t - GPIO input state

reverseDirection 0x600 RW uint8_t -

used to change the direction of the main encoder when

using other encoders than the onboard one. Always

recalibrate after changing this setting

shuntResistance 0x700 RO float [0.001 - 0.01]

Current sense resistor value. Setting this register to a value

that is not coherent with the hardware may damage the

controller. In this cases warranty is not respected.

buildDate 0x800 RO uint32_t - software build date

commitHash 0x801 RO char[8] - commit hash

firmwareVersion 0x802 RO uint32_t - -

hardwareVersion 0x803 RO uint8_t - -

bridgeType 0x804 RO uint8_t - type of the mosfet driver

quickStatus 0x805 RO uint16_t - quick status vector

mosfetTemperature 0x806 RO float - power stage temperature

motorTemperature 0x807 RO float - motor temperature (if thermistor is mounted)

motorShutdownTemp 0x808 RW uint8_t -
temperature at which the MD series motor controller will

enter IDLE mode

mainEncoderErrors 0x809 RO uint32_t - main encoder errors

outputEncoderErrors 0x80A RO uint32_t - output encoder errors

calibrationErrors 0x80B RO uint32_t - calibration errors

bridgeErrors 0x80C RO uint32_t - bridge errors

hardwareErrors 0x80D RO uint32_t - hardware errors

communicationErrors 0x80E RO uint32_t - communication errors

motionErrors 0x810 RO uint32_t - motion errors

Skip to main content

file:///home/pawel/mab-github/MD80-x-CANdle-Documentation/_build/md_canopen/OD.html#x6040-control-word

CANopen
MD controllers are capable of supporting CANopen communication protocol according the CiA402

device profile. For further details, please examine the Object Dictionary chapter that contains the

communication objects that are used to exchange data.

Make sure you’ve contacted MABRobotics for the appropriate software update, as the

default MD flasher only supports CANdle protocol.

Setting up a new motor
To set up a new motor make sure the drive is in the “switch on disabled” state. After that make sure

you set up the following registers:

1. Motor Parameters:

0x6075:0 - Rated Current

0x6076:0 - Rated Torque

0x6072:0 - Max Torque

0x6072:0 - Max Current

0x6080:0 - Max Speed

0x2000:1 - Pole Pairs

0x2000:2 - Torque Constant

0x2000:5 - Torque Bandwidth

0x2000:7 - Motor Shutdown Temp

0x2000:8 - Gear Ratio

2. Velocity PID gains:

0x2001:1 - Kp

0x2001:2 - Ki

Note

Skip to main content

0x2001:3 - Kd

0x2001:4 - Integral Limit

3. Position PID gains:

0x2002:1 - Kp

0x2002:2 - Ki

0x2002:3 - Kd

0x2002:4 - Integral Limit

4. Profile velocity/position settings:

0x6081 - Profile Velocity

0x6083 - Profile Acceleration

0x6084 - Profile Deceleration

0x6085 - Quick Stop Deceleration

Remember to save the parameters - please see the last chapter

Setting up an external encoder
Setup of the external encoder should be done after the motor has been configured, as suggested in

previous paragraph. To setup the output encoder the following fields need to be filled:

0x2005:1 - Output Encoder Type (please see output encoder)

0x2005:2 - Calibration Mode (please see output encoder calibration)

0x2005:3 - Mode (please see output encoder)

Remember to save the parameters - please see the last chapter

Note

Note

Skip to main content

Saving and Calibrating
After the parameters have been filled there are two more steps to follow - save to non-volatile

memory and calibrate:

1. Run store parameters routine using 0x1010:1:

make sure the state machine is in “switch on disabled” state (write 0x8 to controlword

0x6040)

write 0x65766173 to 0x1010:1

wait for the drive to reboot

2. Run calibration routine using 0x2003:3 (and output encoder calibration routine 0x2003:4 if output

encoder is present)

make sure the state machine is in “operational” state (write sequentially 0x8, 0x6, 0xf to

controlword 0x6040, and check if the statusword 0x6041 is 0x39)

make sure the drive is in “service” operation mode (write -2 to Modes Of Operation 0x6060)

write 1 to 0x2003:3 to start the calibration

wait for the drive to reboot

Object Dictionary
Object dictionary holds CAN objects that can be accessed using SDOs and in some cases by PDOs.

There are three main groups in which the address space is divided into:

1. Communication Area

2. Manufacturer Specific Area

3. Profile Specific Area

1. Communication Area

The communication area describes the CANopen objects compliant with CiA301 standard.

0x1000 - Device type Skip to main content

0x1001 - Error Register

Indicates whether an error has occured. Currently, only the 0th bit is implemented, that indicates a

general error. For a more verbose error and warning status, please see 0x2004 System Status.

0x1008 - Manufacturer Device Name

0x1010 - Store Parameters

Use this object for saving parameters in non-volatile memory. Works only in “switch on disabled”

state. To avoid saving parameters by mistake a value of 0x65766173 has to be explicitly written to

0x1010:1.

0x1017 - Producer Heartbeat Time

Defines the period of heartbeat message sent by the MD80.

0x1600 - Receive PDO1 mapping

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x1000 0x00 Device type UINT32 RO - - - 0x00020192 -

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x1001 0x00 Error Register UINT8 RO TX - - 0x00 -

Bit Meaning

0 General Error

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x1008 0x00 Manufacturer Device Name STR RO - - - "MD80" -

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x1010 0x01 Store Parameters UINT32 RW - - - - -

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x1017 0x00 Producer Heartbeat Time UINT16 RW - - - - -

Skip to main content

0x1601 - Receive PDO2 mapping

0x1602 - Receive PDO3 mapping

0x1603 - Receive PDO4 mapping

0x1A00 - Transmit PDO1 mapping

0x1A01 - Transmit PDO2 mapping

Index PDO Index Name

0x1600 - Receive PDO1 mapping

0x1600:1 0x6040 ControlWord

Index PDO Index Name

0x1601 - Receive PDO2 mapping

0x1601:1 0x6040 ControlWord

0x1601:2 0x6060 Modes Of Operation

Index PDO Index Name

0x1602 - Receive PDO3 mapping

0x1602:1 0x6040 ControlWord

0x1602:2 0x607A Target Position

Index PDO Index Name

0x1603 - Receive PDO4 mapping

0x1603:1 0x6040 ControlWord

0x1603:2 0x60FF Target Velocity

Index PDO Index Name

0x1A00 - Transmit PDO1 mapping

0x1A00:1 0x6041 StatusWord

0x1A00:2 0x6061 Modes Of Operation Display

Index PDO Index Name

0x1A01 - Transmit PDO2 mapping

0x1A01:1 0x6041 StatusWord

0x1A01:2 0x6064 Position Actual ValueSkip to main content

0x1A02 - Transmit PDO3 mapping

0x1A03 - Transmit PDO4 mapping

2. Manufacturer Specific Area

The manufacturer specific area describes the custom CANopen objects, valid only for MD80s.

0x2000 - Motor Settings

Configures the most important motor settings. This object is especially useful when you want to

configure or reconfigure an MD series motor controller for a particular motor. Be sure to save after

modification using 0x1010 Store Parameters.

Index PDO Index Name

0x1A02 - Transmit PDO3 mapping

0x1A02:1 0x6041 StatusWord

0x1A02:2 0x606C Velocity Actual Value

Index PDO Index Name

0x1A03 - Transmit PDO4 mapping

0x1A03:1 0x6041 StatusWord

0x1A03:2 0x6077 Torque Actual Value

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x2000 0x01 Pole Pairs UINT32 RW - yes [2;255] 0 -

0x2000 0x02 Torque constant FLOAT32 RW - yes - 0 Nm/A

0x2000 0x03 Phase Inductance FLOAT32 RW - yes [5nH-100mH] 0 H

0x2000 0x04 Phase Resistance FLOAT32 RW - yes [5mOhm-20Ohm] 0 Ohm

0x2000 0x05 Torque Bandwidth UINT16 RW - yes 50-2500 0 Hz

0x2000 0x06 Motor Name STR(20) RW - yes - 0 -

0x2000 0x07 Motor Shutdown Temperature UINT8 RW - yes 10-80 0 *C

0x2000 0x08 Gear Ratio FLOAT32 RW - yes - 1 -

0x2000 0x09 Calibration Mode UINT8 RW - yes FULL = 0, NOPPDET = 1 0 -

0x2000 0x0A Can ID UINT32 RW - yes 1 - 31 1 -

Skip to main content

0x2001 - Velocity PID Controller

Configures the Velocity PID controller gains. Be sure to save after modification using 0x1010 Store

Parameters.

0x2002 - Position PID Controller

Configures the Position PID controller gains. Be sure to save after modification using 0x1010 Store

Parameters.

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x2001 0x01 Kp FLOAT32 RW - yes - 0 -

0x2001 0x02 Ki FLOAT32 RW - yes - 0 -

0x2001 0x03 Kd FLOAT32 RW - yes - 0 -

0x2001 0x04 Integral Limit FLOAT32 RW - yes - 0 Nm

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x2002 0x01 Kp FLOAT32 RW - yes - 0 -

0x2002 0x02 Ki FLOAT32 RW - yes - 0 -

0x2002 0x03 Kd FLOAT32 RW - yes - 0 -

0x2002 0x04 Integral Limit FLOAT32 RW - yes - 0 rad/s

Skip to main content

file:///home/pawel/mab-github/MD80-x-CANdle-Documentation/_build/html/_images/velocity_pid_CANopen.png
file:///home/pawel/mab-github/MD80-x-CANdle-Documentation/_build/html/_images/velocity_pid_CANopen.png
file:///home/pawel/mab-github/MD80-x-CANdle-Documentation/_build/html/_images/position_pid_CANopen.png
file:///home/pawel/mab-github/MD80-x-CANdle-Documentation/_build/html/_images/position_pid_CANopen.png

0x2003 - System Command

Allows to issue a system command. Write a non-zero value to start a specific action. Actions work

only in “switch on disabled” state and “service” (-1) operation mode.

0x2004 - System Status

Allows to read System status. Each specific status is a UINT32, where lower bits (0-15) indicate

errors, and higher bits (16-31) indicate warnings. Please see the Status section to see how to decode

the status to individual fields.

0x2005 - Output Encoder

Output encoder related record.

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x2003 0x01 Blink LEDs BOOL RW - - - 0 -

0x2003 0x02 Reset Controller BOOL RW - - - 0 -

0x2003 0x03 Run Calibration BOOL RW - - - 0 -

0x2003 0x04 Run Output Encoder Calibration BOOL RW - - - 0 -

0x2003 0x05 Set Zero BOOL RW - - - 0 -

0x2003 0x06 Calibrate Current PI Gains BOOL RW - - - 0 -

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x2004 0x01 Main Encoder Status UINT32 RW - - - 0 -

0x2004 0x02 Output Encoder Status UINT32 RW - - - 0 -

0x2004 0x03 Calibration Status UINT32 RW - - - 0 -

0x2004 0x04 Bridge Status UINT32 RW - - - 0 -

0x2004 0x05 Hardware Status UINT32 RW - - - 0 -

0x2004 0x06 DEPRECATED UINT32 RW - - - 0 -

0x2004 0x07 Motion Status UINT32 RW - - - 0 -

0x2004 0x08 Communication Status UINT32 RW - - - 0 -

Skip to main content

0x2006 - Temperature

Motor and mosfet temperature readout record.

3. Profile Specific Area

The profile specific area describes the CANopen objects compliant with CiA402 standard.

0x6040 - Control Word

Control word is used to change the state of the internal CiA402 state machine implemented on the

drive.

The state machine is defined as follows:

Index
Sub

Index
Name

Data
Type

SDO PDO NVM Range Default Units

0x2005 0x01 Type UINT32 RW - yes
1 (AS5047_CENTER), 2 (AS5047_OFFAXIS), 3

(MB053SFA17BENT00)
0 -

0x2005 0x02
Calibration

Mode
UINT32 RW - yes FULL = 0, DIRONLY = 1 0 -

0x2005 0x03 Mode UINT32 RW - yes NONE = 0, STARTUP = 1, MOTION = 2, REPORT = 3 0 -

0x2005 0x04 Position FLOAT32 RO TX - - 0.0 rad

0x2005 0x05 Velocity FLOAT32 RO TX - - 0.0 rad/s

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x2006 0x01 Motor Temperature FLOAT32 RO TX - - 0.0 -

0x2006 0x02 Mosfet Temperature FLOAT32 RO TX - - 0.0 -

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x6040 0x00 Control Word UINT16 RW RX - - 0x00 -

Skip to main content

All the transitions are based on the control word. The current state can be read using the status word

(0x6041).

Skip to main content

X means “do not care”

Example:

To put the drive into operational mode set:

1. Control word = 6 (dec) (Shutdown cmd)

2. Control word = 15 (dec) (Switch on and Enable Operation cmds)

The events and respective transitions are gathered in the table below:

Command
Reset Fault (bit

7)
Enable Operation (bit

3)
Quick Stop (bit

2)
Disable Voltage (bit

1)
Switch On (bit

0)
Decimal

value

Shutdown 0 X 1 1 0 6

Switch on 0 0 1 1 1 7

Switch on and Enable

Operation
0 1 1 1 1 15

Disable Voltage 0 X X 0 X 0

Quick Stop 0 X 0 1 X 2

Disable operation 0 0 1 1 1 7

Enable operation 0 1 1 1 1 15

Fault reset 0->1 X X X X 128

Skip to main content

0x6041 - Status Word

bit 10 of the statusword indicates the current target has been reached (1) or not (0). This bit is motion

mode - dependent, meaning for example in position mode it indicates the position has been reached

(within a 0x6067 Position Window margin), and in velocity mode that a velocity target has been

reached (within 0x606D Velocity Window).

Transition Event Internal action

0 Automatic transition after power up Drive internal initialization

1
Automatic transition after drives internal

initialization
Object dictionary is initalized with NVM data

2 Shutdown command received None

3 Switch on command received None

4 Enable operation command received Current controllers are on, power is applied to the motor

5 Disable operation command received Current controllers are off, power is not applied to the motor

6 Shutdown command received Current controllers are turned off

7 Quick stop command received Current controllers are turned off

8 Shutdown command received Current controllers are turned off

9 Disable voltage command received Current controllers are turned off

10 Disable voltage / Quick stop command received Current controllers are turned off

11 Quick stop command received
Quick stop action is enabled. The drive decelerates and transits to SWITCH ON

DISABLED

12
Automatic transition when quick stop is

completed
Current controllers are turned off

13 Fault ocurred Current controllers are turned off

14 Automatic transition to fault state None

15 Fault reset command received Fault is cleared if not critical

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x6041 0x00 Status Word UINT16 RO TX - - 0x00 -

Status Word State Machine State

xxxx xxxx x0xx 0000 Not ready to switch on

xxxx xxxx x1xx 0000 Switch on disabled

xxxx xxxx x01x 0001 Ready to switch on

xxxx xxxx x01x 0011 Switched on

xxxx xxxx x01x 0111 Operation Enabled

xxxx xxxx x00x 0111 Quick stop active

xxxx xxxx x0xx 1111 Fault reaction active

xxxx xxxx x0xx 1000 Quick stop active

Skip to main content

bit 11 of the statusword indicates whether any of the internal limits was active during current power up

- for more information on which limit is active, check the 0x2004:7 Motion Status.

0x6060 - Modes Of Operation

Use this object to request a motion mode change. The actual mode is reflected in 0x6061 Modes Of

Operation Display.

Service

Mode in which System Commands can be issued.

Idle

Default state of the drive. No torque is produced, motor phases are shorted to GND which causes a

damping sensation on the shaft.

Profile position

Profile position mode uses a trapeziodal trajectory generator on top of the Position PID controller.

Allows to perform smooth point-to-point movements.

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x6060 0x00 Modes Of Operation INT8 RW RX - - 0x00 -

Value Mode

-1 Service

0 Idle

1 Profile Position

3 Profile Velocity

8 Cyclic Sync Position

9 Cyclic Sync Velocity

Skip to main content

Profile velocity

Profile velocity mode uses a trapeziodal trajectory generator on top of the Velocity PID controller.

Allows to reach a certain velocity with a constant acceleration / deceleration.

Skip to main content

Cyclic Sync Position

Raw position PID controller. Target position is reached as fast as possible, respecting the position

range limits, max velocity, and max torque limit. To achieve smooth trajectories new setpoints need to

be sent with high frequency.

Cyclic Sync Velocity

Raw velocity PID controller. Target velocity is reached as fast as possible, respecting the max velocity

limit, and max torque limit. To achieve smooth acceleration new velocity setpoints need to be sent

with high frequency.

0x6061 - Modes Of Operation Display

Use this object to read current motion mode

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x6061 0x00 Modes Of Operation Display INT8 RO TX - - 0x00 -Skip to main content

0x6062 - Position Demand Value

This object provides the target position for Position PID controller, after the limits have been applied.

Expressed in encoder increments.

0x6064 - Position Actual Value

Provides the actual position value read from the encoder, expressed in the output shaft reference

frame. Expressed in encoder increments.

0x6067 - Position Window

Sets the size of the position window within which the target position is considered to have been

reached. This value is symmetrically added to both sides of the target position value. Expressed in

encoder increments.

0x606B - Velocity Demand Value

Provides the target velocity value for the Velocity PID controller, after the limits have been applied.

Expressed in RPM.

Value Mode

-1 Service

0 Idle

1 Profile Position

3 Profile Velocity

8 Cyclic Sync Position

9 Cyclic Sync Velocity

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x6062 0x00 Position Demand Value INT32 RO - - - 0x00 INC

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x6064 0x00 Position Actual Value INT32 RO TX - - 0x00 INC

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x6067 0x00 Position Window INT32 RW TX - - 0x00 INC

Skip to main content

0x606C - Velocity Actual Value

Provides the actual velocity value read from the encoder, expressed in the output shaft reference

frame. Expressed in RPM.

0x606D - Velocity Window

Sets the size of the velocity window within which the target velocity is considered to have been

reached. This value is symmetrically added to both sides of the target velocity value. Expressed in

RPM.

0x6072 - Max Torque

Configures the maximum allowed torque in the motor. The value is expressed in permille of rated

torque. Example: rated torque of the motor is 1Nm, and the maximum is 2Nm. The Max Torque object

should equal to 2000.

0x6073 - Max Current

Configures the maximum allowed phase current in the motor. The value is expressed in permille of

rated current. Example: rated current of the motor is 15A, and the maximum is 30A. The Max Current

object should equal to 2000.

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x606B 0x00 Velocity Demand Value INT32 RO TX - - 0x00 RPM

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x606C 0x00 Velocity Actual Value INT32 RO TX - - 0x00 RPM

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x606D 0x00 Velocity Window INT32 RW TX - - 0x00 RPM

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x6072 0x00 Max Torque UNT16 RW RX yes 32767 0x00 -

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x6073 0x00 Max Current UNT16 RW RX yes 50000 0x00 -
Skip to main content

0x6075 - Motor Rated Current

Configures the motor rated current expressed in mA. This object is a reference for parameters such

as 0x6073 Max Current. The value should be taken from the motor’s datasheet.

0x6076 - Motor Rated Torque

Configures the motor rated torque expressed in mNm. This object is a reference for parameters such

as 0x6072 Max Torque. The value should be taken from the motor’s datasheet.

0x6077 - Torque Actual Value

Provides the actual velocity value read from the encoder, expressed in the output shaft reference

frame. Expressed in permille of 0x6076 Motor Rated Torque.

0x6079 - DC Link Circuit Voltage

Provides the bus voltage measured by the motor controller in mV.

0x607A - Target Position

Sets the target position for all motion modes.

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x6075 0x00 Motor Rated Current INT32 RW - yes 1000000 0x00 mA

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x6076 0x00 Motor Rated Torque INT32 RW - yes 1000000 0x00 mNm

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x6077 0x00 Torque Actual Value INT16 RO TX - - 0x00 -

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x6079 0x00 DC Link Circuit Voltage UNT32 RO RX - - 0x00 mV

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x607A 0x00 Target Position INT32 RW RX - - 0x00 inc
Skip to main content

0x607D - Software Position Limit

Configures software limits that each new target position is checked against, and clipped if needed.

0x6080 - Max Motor Speed

Sets the maximum allowed velocity of the actuator’s output shaft in both directions.

0x6081 - Profile Velocity

Configures the target velocity for the profile position mode. If this value is greater than 0x6080 Max

Motor Speed, it will be limited to Max Motor Speed.

0x6083 - Profile Acceleration

Configures the acceleration for profile position and profile velocity modes.

0x6084 - Profile Deceleration

Configures the deceleration for profile position and profile velocity modes.

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x607D 0x01 Min Position Limit INT32 RW RX yes - 0x00 inc

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x607D 0x02 Max Position Limit INT32 RW RX yes - 0x00 inc

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x6080 0x00 Max Motor Speed UINT32 RW RX - - 1000 RPM

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x6081 0x00 Profile Velocity UINT32 RW RX yes - 0 RPM

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x6083 0x00 Profile Acceleration UINT32 RW RX - - 0 RPM/s

Skip to main content

0x60FF - Target Velocity

Sets the target velocity for all motion modes.

0x6502 - Supported Drive Modes

Indicates the supported drive modes (binary value).

Migration to and from CANopen

Preparation

Download flasher programs from here:

MD CANopen

MD FDCAN Protocol

The migration is performed via flashing appropriate firmware onto the MD device. Necessary

components for this procedure are:

Candle or Candle HAT device

MD driver

PC or SBC with mdtool installed

Connect your candle device to the driver and power it. Make sure that candle device is connected via

the USB to the host.

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x6084 0x00 Profile Deceleration UINT32 RW RX - - 0 RPM/s

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x60FF 0x00 Target Velocity INT32 RW RX - - 0 RPM

Index Sub Index Name Data Type SDO PDO NVM Range Default Units

0x6502 0x00 Supported Drive Modes INT32 RO - - - 647 -

Skip to main content

Only one device can be connected on the can line during the procedure, so all the drivers

need to be updated individually.

Migration to CANopen

First step

When switching to CANopen the driver ID must be within the range of valid nodeIDs in CANopen. To

set this up we usually use the lowest valid nodeID in our protocol which is 10. So the first command

issued should be:

Example:

Second step

It is necessary to save this new ID to the persistent memory using save command as follows:

Example:

Third step

Use flasher to flash firmware onto the board:

mdtool config can <previous_id> <new_id> <baudrate> <watchdog>

mdtool config can 100 10 1M 200

mdtool config save <id>

mdtool config save 10

Important

Skip to main content

Example:

Migration from CANopen

Using the recovery procedure, the driver can be reverted to version with MD FDCAN protocol. The

recovery command looks like this:

Example:

After starting this command, the driver needs to be restarted manually and then the recovery re-

flashing procedure will begin. The driver should then operate in MD FDCAN protocol mode.

If the nodeID was lower than 10 the driver should automatically assign itself an ID of 10.

Common Issues and FAQ

MDxx is not detected on “mdtool ping all” command
There might be several reasons why MD controllers are not showing up in the mdtool ping all

command output. Please ensure you’ve check the things listed below:

1. Check the power supply - when powered the MDxx’s onboard LEDs should be blinking. The

LEDs are located under the connectors near the PCB edge.

2. Check the LED blink pattern - if red and green LEDs are blinking one after another quickly in 4s

intervals this means you need to download the firmware using MAB_CAN_Flasher program with

<path_to_canopen_flasher> --id <id> --baud <baudrate>

./MAB_CAN_Flasher_CANopen_7fd0626 --id 10 --baud 1M

<path_to_fdcan_protocol_flasher> --id 9 --baud 1M --wait

./MAB_CAN_Flasher --id 9 --baud 1M --wait

Skip to main content

id 9 and wait flag, ex.: ./MAB_CAN_Flasher --id 9 --baud 1M --wait . If the red led is on

and the green one is blinking in 1s intervals this means there is an error in the setup that can be

checked using mdtool setup info. If only the green LED is blinking in 1s intervals the MD8xx

should operate and be discovered without issues. In case it’s not please check the cabling one

more time.

How to check if my motor is operating properly
First thing to check is the mdtool setup info command output. If there are no errors (meaning the

error field are empty or show ‘ALL OK” message) the drive did not detect any issues by itself. The

other thing is to make sure that the actuator runs smoothly - such that there is no excessive cogging

torque when rotating. You can check it using mdtool test move command - for example by

commanding 0 position and moving the rotor by hand - such test makes easy to determine if there is

excessive cogging torque. You can also use the Python/C++ examples to rotate the motor. The last

thing to check is the motion parameters - position velocity and torque. You can check them by looking

at the mdtool encoder command output. If any of these quantities look suspicious feel free to

contact us using: contact@mabrobotics.pl.

Motor terminals not soldered properly
In case you have ordered the MDxx controllers without the MAB assembly option you will have to

make sure the controller is soldered correctly to the motor. Usually, hobby motors have multiple wires

wound in parallel on each motor phase, and it is crucial to solder ALL wires to the controller. Leaving

a single string of wire can lead to an imbalance between the phases, which in the best scenario will

cause the calibration to fail and in the worst will cause large torque variations (large cogging torque).

Operating such an improperly configured motor can lead to hazardous situations for both

the operator and the driver.

Warning⚠

Skip to main content

https://www.mabrobotics.pl/contact

Failed calibration
The calibration can fail for several reasons, yet the most common one is just improperly soldered

motor wires. In this case, you’ll see the ERROR_CALIBRATION general error or

ERROR_CALIBRATION and ERROR_PARAM_IDENT. These two errors will also show up when

automatic parameter identification fails. In this case, rerunning the calibration should fix the issue.

ERROR_POLE_PAIR_DET error is shown in case the automatic pole pair detection algorithm

detected a different pole pair number (compared to the one form the *.cfg file) or it failed due to high

rotor friction/external load, which stopped the rotor during the process.

The other most common reason is that the eccentricity calibration is interrupted by either a large load

on the motor shaft or the encoder placed non-axially in regard to the magnet mounted on the motor

shaft. In this case, you’ll see the ERROR_CALIBRATION general error. To fix it be sure to unload the

motor shaft completely, make it run smoothly, and make sure the controller is placed axially with

respect to the magnet placed on the motor shaft.

Lack of FDCAN termination
Proper termination on the FDCAN bus is crucial, especially when the string of actuators is long. In

case you see some communication errors, or the drives connected to your FDCAN bus string are not

discovered correctly using MDtool be sure to check if the termination is present and working (the

resistance between CANH and CANL lines should be 60 Ohms - two 120 Ohm resistors in parallel).

The termination resistor is embedded in the CANdle device, and can be turned on/off with a physical

switch.

Since version HW2.0 the termination resistor can be mounted on demand on the MD

controllers. Please check out the mdtool config can command for more information.

Hint

Skip to main content

Different FDCAN speeds between actuators
MD x CANdle ecosystem is not adopted for working with actuators of different FDCAN baudrates.

Trying to control actuators with different baud rates on a common FDCAN bus can cause the

communication to fail or not start at all. This is why it is crucial to make sure when you call the

mdtool ping all command, all discovered MD controllers lie in a single baudrate category. If that’s

not the case, use the mdtool config can command to fix it.

Too-low torque bandwidth setting
When the torque bandwidth is set to a too low value it can cause the motor to behave improperly in

highly dynamic scenarios, for example, impacts. Because with low torque bandwidth, the torque

controller gains are set so that the controller is slow, it might not be able to keep up with the changing

setpoint value. In order to fix this issue, you can calibrate the motor for a higher torque bandwidth

frequency using mdtool config bandwidth command. This has a disadvantage connected to it -

the higher the bandwidth the more audible noise you will hear coming from the motor.

Downloads

3D models
Simplified (lightweight) 3D *.STEP models of MABRobotics products can be found here.

Software (stable)
Main stable releases:

Date CANdle lib MDtool pyCANdle CANdle ROS CANdle ROS2 CANdle device MD Firmware Manual

earlier 3.0 1.1.0 1.2.0 1.1.0 1.1.0 1.4 1.0 1.0

12.12.2022 3.1 1.2.1 1.3.1 1.2.0 1.2.0 2.0 2.0 1.1.0

05.04.2023 3.3.0 1.3.0 1.4.0 1.3.0 1.3.0 2.2.0 2.2.0 1.2.0

31.05.2024 3.4.0 1.4.1 1.5.1 1.3.2 1.3.2 2.2.1 2.3.1 1.2.1

22.08.2024 (latest) 3.5.1 1.5.1 1.6.0 1.4.0 1.4.0 2.2.1 2.4.0 this documentSkip to main content

https://drive.google.com/drive/folders/1HMs3-LDdo9Fq8obLJfhrmhvfJQhLiTa4?usp=sharing
https://github.com/mabrobotics/candle/releases/tag/v3.0
https://github.com/mabrobotics/mdtool/releases/tag/v1.1
https://pypi.org/project/pyCandleMAB/1.2.0/
https://github.com/mabrobotics/candle_ros/releases/tag/v1.1
https://github.com/mabrobotics/candle_ros2/releases/tag/v1.1
https://github.com/mabrobotics/candle/releases/tag/v3.1_hotfix
https://github.com/mabrobotics/mdtool/releases/tag/v1.2.1
https://pypi.org/project/pyCandleMAB/
https://github.com/mabrobotics/candle_ros/releases/tag/v1.2
https://github.com/mabrobotics/candle_ros2/releases/tag/v1.2
https://drive.google.com/drive/folders/10wIX2uEaf42pkwGgW9fVAcGT7zrbptN9?usp=share_link
file:///home/pawel/mab-github/MD80-x-CANdle-Documentation/_build/MAB_CAN_Flasher_ea1d72f2_V2.0.0
https://github.com/mabrobotics/candle/releases/tag/v3.3.0
https://github.com/mabrobotics/mdtool/releases/tag/v1.3.0
https://pypi.org/project/pyCandleMAB/1.4.0/
https://github.com/mabrobotics/candle_ros/releases/tag/v1.3.0
https://github.com/mabrobotics/candle_ros2/releases/tag/v1.3.0
https://drive.google.com/drive/folders/1KDQ-C75hCG3vG0TmMa5ZI3u2Hdv0R0jF?usp=share_link
https://drive.google.com/drive/folders/1fc-_x4e1BJuoYAXRuuwuZ3nlq07d4J5S?usp=share_link
https://drive.google.com/drive/folders/1mxcU9kXTvOaDagToViuQLT_6AWqyEF4M?usp=sharing
https://github.com/mabrobotics/candle/releases/tag/v3.4.0
https://github.com/mabrobotics/mdtool/releases/tag/v1.4.1
https://pypi.org/project/pyCandleMAB/1.5.1/
https://github.com/mabrobotics/candle_ros/releases/tag/v1.3.2
https://github.com/mabrobotics/candle_ros2/releases/tag/v1.3.2
https://drive.google.com/drive/folders/1iLx-2KV4Cg57oAxH690rDtHau0f8aIYJ?usp=sharing
https://drive.google.com/file/d/1JEStPSVnSHGrSZuBAMhupySp18OfRDAs/view?usp=sharing
file:///home/pawel/mab-github/MD80-x-CANdle-Documentation/_build/docs/1.2.1.pdf
https://github.com/mabrobotics/candle/releases/tag/v3.5.1
https://github.com/mabrobotics/mdtool/releases/tag/v1.5.1
https://pypi.org/project/pyCandleMAB/1.6.0
file:///home/pawel/mab-github/MD80-x-CANdle-Documentation/_build/candle-firmware/MAB_USB_Flasher_2.2.1.zip
file:///home/pawel/mab-github/MD80-x-CANdle-Documentation/_build/md-firmware/MAB_CAN_Flasher_2.4.0.zip

MD update tool - MAB CAN Flasher
MAB_CAN_Flasher is a console application used to update the MD controller software using CANdle

that can be downloaded at the top of this page. The MD firmware is contained in the

MAB_CAN_Flasher application itself. To update the firmware connect the CANdle to the PC and the

MD controller(s), and apply the power supply. You can make sure all the controllers are functional

using MDtool and the mdtool ping all command before you proceed to update the controllers.

After that, you are ready to run the update tool. We highly advise you to call ./MAB_CAN_Flasher

--help command on the first use to get acquainted with the available options.

Make sure the MAB_CAN_Flasher can be executed. If not use the sudo chmod +x

./MAB_CAN_Flasher command.

Example use cases

./MAB_CAN_Flasher --id 150 --baud 1M - update the MDxx controller with id equal to 150, which

current CAN speed is 1M (the default CAN speed is 1M). Example output of this command for an

ak80-64 motor:

./MAB_CAN_Flasher --all --baud 1M - update all available MDxx controllers, whose current CAN

speed is 1M (all controllers need to have the same speed). Example command output for two MD

controllers:

Note

Skip to main content

In case the update process is interrupted or the MD controller seems to be not functioning

(fast periodical flashing of the LEDs), you can disconnect the power supply, call:

While the command is running connect the power supply. This command will wait for the

bootloader response and try to recover the firmware. If the flashing does not occur in the

first power cycle you can repeat it until the bootloader is detected. If using that procedure

only one driver may be present on the can bus. An example output of the wait option for

the ak80-64 motor is shown below:

./MAB_CAN_Flasher --id 9 --baud 1M --wait

Important

Skip to main content

CANdle update tool - MAB USB Flasher
MAB_USB_Flasher is a console application used to update the CANdle software using USB bus.

Currently, only updates over USB are supported (updates over SPI and UART are not supported). To

update, first turn off all applications that may be using CANdle, and simply run ./MAB_USB_Flasher .

Make sure the MAB_USB_Flasher can be executed. If not use the sudo chmod +x

./MAB_USB_Flasher command.

After a successful update, the CANdle device is ready.

CANopen Flashers
Those flashers are intended to be used with CANopen controllers.

Candle and CandleHAT devices do not support CANopen protocol.

Versions:

Date MD Firmware (CANopen)

22.08.2024 (latest) 2.4.0

Note

Important

Skip to main content

file:///home/pawel/mab-github/MD80-x-CANdle-Documentation/_build/md-firmware/MAB_CAN_Flasher_CANopen_2.4.0.zip

Changelogs

Latest [22.08.2024]

CANdle lib

Changed license to MIT

Minor bug-fixes

MDtool

Changed license to MIT

Minor bug-fixes

[23.07.2024]

MD Firmware

Removed homing feature for safety, will be brought back in future releases

Added GPIO general functionality - GPIO Input

Relabeled Brake Mode as a GPIO mode, address and values stayed the same

Added support for MD20 driver

CANdle lib

Removed homing feature support for safety, will be brought back in future releases

Added GPIO general functionality support

Relabeled Brake Mode as a GPIO mode, address and values stayed the same

Fixed typos in register names:
Skip to main content

runCalibrateOutpuEncoderCmd → runCalibrateOutputEncoderCmd

motorTorgueBandwidth → motorTorqueBandwidth

Added support for MD20 driver

MDtool

Added compatibility with the newest CANdle lib functionalities

